Answer:
The value is
Explanation:
From the we are told that
The initial speed of the object is
The greatest height it reached is 
Generally from kinematic equation we have that

At maximum height v = 0 m/s
So

=> 
Here H is the height from the initial height to the maximum height
So the initial height is mathematically represented as

=> 
=> 
Generally the time taken for the object to reach maximum height is mathematically evaluated using kinematic equation as follows

At maximum height v = 0 m/s

=> 
Generally the time taken for the object to move from the maximum height to the ground is mathematically using kinematic equation as follows

Here the initial velocity is 0 m/s given that its the velocity at maximum height
Also g is positive because we are moving in the direction of gravity
So

=> 
Generally the total time taken is mathematically represented as

=> 
=>
Before the impact, let the velocity of the baseball was v m/s.
After being hit by the bat its velocity is -2v
So, change in velocity, Deltav=v-(-2v)=3v
Acceleration is defined as the rate of change in velocity, i.e. actual change in velocity divided by the time taken to change it. Time taken to change velocity is the time of actual contact of the bat and ball, i.e. 0.31 s.
a=(Deltav)/(Deltat)
=(3v)/0.37
Therefore, a/v=3/0.31=9.7 s^-1
So, the ratio of acceleration of the baseball to its original velocity is 9.7.
The sentence can be completed as follows:
The wavelength of an electromagnetic waves is the spatial distance between two successive troughs.
Note that the wavelength of a wave can also measured as the spatial distance between two successive crests of the wave. Also note that the second part of the sentence ("also known as the period") is not true, because period is another thing (in fact, the period is the time interval between two successive troughs).
The number of heat units needed to raise the temperature of a body by one degree.
Answer:
The hiker followed a road heading north for 2 miles in 30 minutes.
Explanation:
In order to describe the motion of an object, distance covered and time taken must be required. The total path covered by an object is called the distance travelled.
The hiker followed a road heading north for 2 miles in 30 minutes. This describes the motion of hiker. The motion shows how fast the hiker is moving.
Distance, d = 2 miles = 3218.6 m
times, t = 30 minutes = 1800 seconds
So, we can say that the hiker is moving with a speed of 1.78 m/s in north direction.
Hence, this is the required solution.