1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara [203]
3 years ago
7

You’re driving your car towards an intersection. A Porsche is stopped at the red light. You’re traveling at 36 km/h (10 m/s). As

you are 15 m from the light, the light turns green, and the Porsche accelerates from rest at 3 m/s2. You continue at constant speed. a. How far from the stop line do you pass the Porsche? At what time, measured from when the light turned green, do you pass the Porsche? b. As the Porsche keeps accelerating, it eventually catches up to you again. How far from the stop line does it pass you? At what time, measured from when the light turned green, does it pass you? c. If a Boston police officer happens to get you and the Porsche on a radar gun at the instant the Porsche passes you, will either of you be pulled over for speeding? Assume the speed limit is 50 km/h.
Physics
1 answer:
34kurt3 years ago
6 0

Your position at time t, relative to the stop line:

x_1=-15\,\mathrm m+\left(10\dfrac{\rm m}{\rm s}\right)t

The Porsche's position:

x_2=\dfrac12\left(3\dfrac{\rm m}{\mathrm s^2}\right)t^2

a. You pass the Porsche immediately after the time it takes for x_1=x_2:

-15\,\mathrm m+\left(10\dfrac{\rm m}{\rm s}\right)t=\dfrac12\left(3\dfrac{\rm m}{\mathrm s^2}\right)t^2\implies t=2.3\,\rm s

at which point you both will have traveled 7.8 m from the stop line.

b. The equation in part (a) has two solutions. The Porsche passes you at the second solution of about t=4.4\,\rm s, at which point you both will have traveled 29 m.

c. At time t, the Porsche is moving at velocity

v=\left(3\dfrac{\rm m}{\mathrm s^2}\right)t

so that at the moment it passes you, its speed is 13 m/s, which is about 46.8 km/h and below the speed limit, so neither of you will be pulled over.

You might be interested in
A sprinter accelerates from rest to 10.0 m/s in 1.35 s l. What is her acceleration?
ale4655 [162]

Answer:

dsfsdfgfdsggfgsgsfsfgfsgffsfgfgfgf

Explanation:

sgdfggsfdsgfgsgsmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

8 0
3 years ago
(a) What is the intensity in W/m2 of a laser beam used to burn away cancerous tissue that, when 90.0% absorbed, puts 500 J of en
inysia [295]

Answer:

4.42 x 10⁷ W/m²

Explanation:

A = energy absorbed = 500 J

η = efficiency = 0.90

E = Total energy

Total energy is given as

E = A/η

E = 500/0.90

E = 555.55 J

t = time = 4.00 s

Power of the beam is given as

P = E /t

P = 555.55/4.00

P = 138.88 Watt

d = diameter of the circular spot = 2.00 mm = 2 x 10⁻³ m

Area of the circular spot is given as

A = (0.25) πd²

A = (0.25) (3.14) (2 x 10⁻³)²

A = 3.14 x 10⁻⁶ m²

Intensity of the beam is given as

I = P /A

I = 138.88 / (3.14 x 10⁻⁶)

I = 4.42 x 10⁷ W/m²

6 0
3 years ago
Read 2 more answers
14. If the spring constant of a simple harmonic oscillator is doubled, by what factor will the mass of the system need to change
klio [65]

Lets se

And

\\ \rm\Rrightarrow T=2\pi\sqrt{\dfrac{m}{k}}

\\ \rm\Rrightarrow \sqrt{k}T=2\pi\sqrt{m}

So

\\ \rm\Rrightarrow k\propto m

If spring constant is doubled mass must be doubled

8 0
2 years ago
Which formulas have been correctly rearranged to solve for radius? Check all that apply. r = GM central/v^2 r =fcm/v^2 r =ac/v^2
jek_recluse [69]

The orbital radius is: r=\frac{GM}{v^2}

Explanation:

The problem is asking to find the radius of the orbit of a satellite around a planet, given the orbital speed of the satellite.

For a satellite in orbit around a planet, the gravitational force provides the required centripetal force to keep it in circular motion, therefore we can write:

\frac{GMm}{r^2}=m\frac{v^2}{r}

where

G is the gravitational constant

M is the mass of the planet

m is the mass of the satellite

r is the radius of the orbit

v is the speed of the satellite

Re-arranging the equation, we find:

\frac{GM}{r}=v^2\\r=\frac{GM}{v^2}

Learn more about circular motion:

brainly.com/question/2562955

brainly.com/question/6372960

#LearnwithBrainly

7 0
3 years ago
Read 2 more answers
Why does the car stop? Where did the energy go?
Viefleur [7K]

Answer:

Because you hit the break?

8 0
2 years ago
Other questions:
  • A wind turbine takes in energy from wind with the goal of converting it into electrical energy. Much of the wind energy is also
    10·2 answers
  • Why do you think scientists put their results in data tables and graphs?
    5·1 answer
  • Also confused on this can someone please help??!
    10·1 answer
  • Two climbers are on a mountain. Simon, of mass m, is sitting on a snow covered slope that makes an angle θ with the horizontal.
    11·1 answer
  • Which type of thermal energy transfer does a wrapping of cotton or plastic reduce the most, conduction, convection, radiation, t
    14·1 answer
  • A metal detector used in airports is actually a large coil of wire carrying a small current. Explain how it detects a gun, even
    10·1 answer
  • What is the basis for rutherford's planetary model?
    7·1 answer
  • An iron nail floats in mercury and sinks in water. explain why?​
    7·1 answer
  • If a 50-kg Person is running at a rate of 2m/s, the person's momentum is _____ kg• m/s.
    7·1 answer
  • Tuklasin
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!