An adiabatic process is when the system is insulated that no heat is released to the surroundings. For this type of process, we have a derived formula written below:
(T₂/T₁)^C = (V₁/V₂)
where C = Cv/nR
From the complete problem shown in the attached picture, Cv = (3/2)R. Thus,
C= (3/2)/1 mol = 3/2
(T₂/305 K)^(3/2) = (8.5 L/82 L)
Solving for T₂,
<em>T₂ = 67.3 K</em>
Step one write the chemical equation for reaction
= Ag2O + 2(C10H10N4SO2)---> 2 ( AgC10H9N4SO2)
The reacting ratio of Ag2O to AgC10H9N4SO2 is 1:2 from the reaction above
step 2; find the number of moles of AgC10H9N4SO2
that is mass/molar mass
The molar mass of AgC10H9N4SO2 = 107.86 +(12 x10) + (1 x 9) + (4 x 14) +32 +(16 x2) =356.86g/mol
moles is therefore= 25g/356.86g/mol= 0.07moles
by use of mole ratio the moles of Ag2O= 0.0702=0.035moles
mass = moles x molar mass
the molar mass of Ag2O=231.72 g/mol
mass is therefore= 231.72g/mol x 0.035moles= 8.11grams
Answer:
The cells differentiate.
Explanation:
Organism can be simply classified on the basis of the cellularity of the organism. Two main types of organism are unicellular organisms and the multi cellular organisms.
Multicellular organism contain different types of cells. The different cells differentiate to perform a particular function. The division of labor property is well shown by the multi cellular organism. The cells of the multi cellular organism must show differentiation process.
Thus, the correct answer is option (d).
The molecular formula for sodium chloride is NaCl. The sum of their atomic weights is (22.99 grams/mole + 35.45 grams/mole) = 58.44 grams/mole
take (17.0 grams)/(58.44 grams/mole), which equals 0.291 moles of NaCl.