Answer:
C. 8 eV
Explanation:
In atoms, the energy of each level is quantised. That is one of the reasons why an electron can not exist between energy levels. Thus, when the electron absorbs energy of 8 ev, it get excited and jumps to energy level 2 which has the current value of energy of the electron.
Thus for the electron to move back to its initial energy level, it must emit the exact energy absorbed for its excitation. Therefore, the likely energy of the photon that will be emitted is 8 ev. This would make the electron to have energy that would make it to exist on energy level 1.
Answer:

Explanation:
This question asks us to find the new volume if the pressure changes. Therefore, we use Boyle's Law, which states that pressure and the volume of the gas are inversely proportional. The formula is:

We know that the original sample of gas occupies 4.5 liters at a pressure of 1.63 atmospheres. We know that the pressure was changed to 2.4 atmospheres, but we don't know the volume. Substitute all known values into the formula.

Since we are solving for the new volume (V₂), we need to isolate the variable. It is being multiplied by 2.4 atmospheres and the inverse of multiplication is division. Divide both sides by 2.4 atm.


The units of atmospheres (atm) cancel.



The smallest number of significant figures in the original measurements is 2, so our answer must have the same. For the number we found, that is the tenths place.
The 5 in the hundredth place tells us to round the 0 up to a 1.

The volume of the neon gas when the pressure is changed to 2.4 atmospheres is <u>3.1 Liters.</u>
Answer:
154 g
Explanation:
Step 1: Write the balanced decomposition equation
2 NaN₃(s) ⇒ 2 Na(s) + 3 N₂(g)
Step 2: Calculate the moles corresponding to 79.5 L of N₂ at STP
At STP, 1 mole of N₂ occupies 22.4 L.
79.5 L × 1 mol/22.4 L = 3.55 mol
Step 3: Calculate the number of moles of NaN₃ needed to form 3.55 moles of N₂
The molar ratio of NaN₃ to N₂ is 2:3. The moles of NaN₃ needed are 2/3 × 3.55 mol = 2.37 mol.
Step 4: Calculate the mass corresponding to 2.37 moles of NaN₃
The molar mass of NaN₃ is 65.01 g/mol.
2.37 mol × 65.01 g/mol = 154 g
The minimum amount of energy that colliding particles must have for them to react.
Answer:
Length of a rectangle whose width is 4 inches is
<u>6 inches</u>
Explanation:
Ratio of length to its width is 3 to 2
Let length = L
Let Width = B
L: B = 3 : 2 (given)

Width ,B = 4
Insert B in above equation


cross multiply,

L = 6 inches
Conversion(if required) ,
1 inch = 2.54 cm
6 inch = 2.54 (6)
L = 15.24 cm