Answer:
1.52V
Explanation:
Oxidation half equation:
2Al(s)−→2Al^3+(aq) + 6e
Reduction half equation
3Sn2^+(aq) + 6e−→3Sn(s)
E°cell= E°cathode - E°anode
E°cathode= −0.140 V
E°anode= −1.66 V
E°cell=-0.140-(-1.66)
E°cell= 1.52V
Periodic trends are specific patterns that are present in the periodic table that illustrate different aspects of a certain element, including its size and its electronic properties. Major periodic trends include: electronegativity, ionization energy, electron affinity, atomic radius, melting point, and metallic character. Periodic trends, arising from the arrangement of the periodic table, provide chemists with an invaluable tool to quickly predict an element's properties. These trends exist because of the similar atomic structure of the elements within their respective group families or periods, and because of the periodic nature of the elements.
<h3>
Answer:</h3>
4.56 × 10^-19 Joules
<h3>
Explanation:</h3>
We are given;
- Wavelength of the wave as 435.8 nm
We are required to calculate the amount of energy released by an electron.
- We know that the speed of the wave, c is 2.998 × 10^8 m/s
- But, c = f × λ , where f is the frequency and λ is the wavelength
- Energy of a wave is given by the formula;
E = hf , where h is the plank's constant, 6.626 × 10^-34 J-s
But, f = c/λ
Therefore;
f = (2.998 × 10^8 m/s) ÷ (4.358 × 10^-7 m)
= 6.879 × 10^14 Hz
Thus;
Energy = 6.626 × 10^-34 J-s ×6.879 × 10^14 Hz
= 4.558 × 10^-19 Joules
= 4.56 × 10^-19 Joules
Therefore, the energy that must be released by the electron is 4.56 × 10^-19 Joules
Answer:
a. 1.23 V
b. No maximum
Explanation:
Required:
a. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have?
b. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have?
The standard cell potential (E°cell) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E°cell = E°red, cat - E°red, an
If E°cell must be at least 1.10 V (E°cell > 1.10 V),
E°red, cat - E°red, an > 1.10 V
E°red, cat - 0.13V > 1.10 V
E°red, cat > 1.23 V
The minimum standard reduction potential is 1.23 V while there is no maximum standard reduction potential.
Answer:
All secondary consumers will die because they will lose their food source