The entropy change<span> of the surroundings is driven by heat flow and the heat flow determines the sign of ΔS</span>surr<span>. It can be calculated by the following expression:
</span>ΔSsurr = -(ΔH) / T
We calculate as follows:
ΔSsurr = -13200 / 1337 = 9.87 J/ K mol
Hope this answers the question. Have a nice day.
Answer:
The kinetic energy of the car at the top of the hill is 140280 Joules.
Explanation:
Mass of the car, m = 620 kg
Speed of the car, v = 24 m/s
Height of the hill, h = 30 m
The engine can produce up to 144,000 J of work during that time, W = 144,000 J
We need to find the kinetic energy of the car at the top of the hill. It can be calculated using conservation of mechanical energy as :




So, the kinetic energy of the car at the top of the hill is 140280 Joules. Hence, this is the required solution.
Solution :
Acceleration due to gravity of the earth, g 

Acceleration due to gravity at 1000 km depths is :




= 8.23 m/s
Acceleration due to gravity at 2000 km depths is :




= 6.73 m/s
Acceleration due to gravity at 3000 km depths is :



= 5.18 m/s
Acceleration due to gravity at 4000 km depths is :




= 3.64 m/s
Answer:
900 m
Explanation:
Given that,
A hiker travels 300 m [N], turns around and hikes 550 m[S], and then finds out he has to hike back another 50.0 m [N].
We need to find the total distance travelled by the hiker.
Let north be positive and south be negative direction.
Distance = total path covered
D = 300 + 550 + 50
D = 900 m
So, the required distance is equal to 900 m.