1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
3 years ago
9

A proton initially at rest is accelerated by a uniform electric field. The proton moves 5.62 cm in 1.15 x 10^-6 s. Find the volt

age drop through which the proton moves. (Answer should be positive)
Physics
1 answer:
krok68 [10]3 years ago
4 0

Answer:

49.85 V

Explanation:

u = 0, s = 5.62 cm, t = 1.15 x 10^-6 s

Let the electric field is E and voltage is V.

Use second equation of motion

s = ut + 1/2 a t^2

5.62 x 10^-2 = 0 + 0.5 a x (1.15 x 10^-6)^2

a = 8.5 x 10^10 m/s^2

m x a = q x E

E = m x a / q

E = (1.67 x 10^-27 x 8.5 x 10^10) / (1.6 x 10^-19)

E = 887.19 V/m

V = E x s

V = 887.19 x 5.62 x 10^-2 = 49.85 V

You might be interested in
A wall (of thermal conductivity 0.98 W/m · ◦ C) of a building has dimensions of 3.7 m by 15 m. The average inside and outside
disa [49]

Answer:

Answer:

the amount of energy flowing is 1.008x10⁹J

Explanation:

To calculate how much heat flows, the expression is the following:

Where

K=thermal conductivity=0.81W/m°C

A=area=6.2*12=74.4m²

ΔT=30-8=22°C

L=thickness=8cm=0.08m

t=time=16.9h=60840s

Replacing:

Explanation:

4 0
2 years ago
How might the velocity (speed) of wind or water affect the deposition of sediments?
Maksim231197 [3]
Well depending on the speed of both of those things is were the rock will be placed and it also determines how fast can an environment change
<span />
6 0
3 years ago
Identify the region in the image where lighter elements, such as hydrogen or helium, are more likely to be found in a liquid or
Annette [7]

Lower in an arrangement

3 0
3 years ago
Read 2 more answers
Sort the forces as producing a torque of positive, negative, or zero magnitude about the rotational axis identified in part
Fantom [35]

a) Angular acceleration: 17.0 rad/s^2

b) Weight: conterclockwise torque, reaction force: zero torque

Explanation:

a)

In this problem, you are holding the pencil at its end: this means that the pencil will rotate about this point.

The only force producing a torque on the pencil is the weight of the pencil, of magnitude

W=mg

where m is the mass of the pencil and g the acceleration of gravity.

However, when the pencil is rotating around its end, only the component of the weight tangential to its circular trajectory will cause an angular acceleration. This component of the weight is:

W_p =mg sin \theta

where \theta is the angle of the rod with respect to the vertical.

The weight act at the center of mass of the pencil, which is located at the middle of the pencil. So the torque produced is

\tau = W_p \frac{L}{2}=mg\frac{L}{2} cos \theta

where L is the length of the pencil.

The relationship between torque and angular acceleration \alpha is

\tau = I \alpha (1)

where

I=\frac{1}{3}mL^2

is the moment of inertia of the pencil with respect to its end.

Substituting into (1) and solving for \alpha, we find:

\alpha = \frac{\tau}{I}=\frac{mg\frac{L}{2}sin \theta}{\frac{1}{3}mL^2}=\frac{3 g sin \theta}{2L}

And assuming that the length of the pencil is L = 15 cm = 0.15 m, the angular acceleration when \theta=10^{\circ} is

\alpha = \frac{3(9.8)(sin 10^{\circ})}{2(0.15)}=17.0 rad/s^2

b)

There are only two forces acting on the pencil here:

- The weight of the pencil, of magnitude mg

- The normal reaction of the hand on the pencil, R

The torque exerted by each force is given by

\tau = Fd

where F is the magnitude of the force and d the distance between the force and the pivot point.

For the weight, we saw in part a) that the torque is

\tau =mg\frac{L}{2} cos \theta

For the reaction force, the torque is zero: this is because the reaction force is applied exctly at the pivot point, so d = 0, and therefore the torque is zero.

Therefore:

- Weight: counterclockwise torque (I have assumed that the pencil is held at its right end)

- Reaction force: zero torque

8 0
3 years ago
Does this diagram illustrate the second law of thermodynamics? Why or why not
Savatey [412]
<h2>Answer:</h2>

The diagram is not showing the second law of thermodynamics. It is the demonstration of 1st law of thermodynamics.

<h3>Explanation:</h3>

Second law of thermodynamics describes the entropy of the system increase with time, it does not decrease with time. It is constant for ideal systems.

While in first law of thermodynamics, it is stated that the energy of a system can not be lost but it is transferred from one form to other form.

And in this picture, it is shown that the energy released from heat source to cold sink is used in doing work.

Work and heat are forms of energy.

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the significance of the nose end marking on a rocket or missile?
    7·1 answer
  • How can you keep sound out of a room
    15·1 answer
  • What is the latitude of the vertical (direct) rays of the sun?
    5·1 answer
  • Which element has the fewest valence electrons?
    15·1 answer
  • Three parallel wires of length l each carry current Iin the same direction. They’re positioned at the vertices of an equilateral
    8·2 answers
  • The Northern Hemisphere is warmer in spring than in winter, because in spring
    10·2 answers
  • With increasing depth, the temperature within earth
    8·1 answer
  • 9) Suppose it takes a plane 5 hours to travel from Philadelphia to San Francisco. It
    9·1 answer
  • Based on the data in the table, what will happen when a sound wave travels
    5·2 answers
  • A 1 pound bucket rests on a table. What is the support force exerted on the bucket by the table? What is the support force when
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!