Taking into account the rule of three for the change of units, the mass of the book is 45600 miligrams.
First of all, the rule of three is a mathematical tool that helps you quickly solve proportionality problems.
Having three known values and one unknown, a proportional relationship is established between all of them in order to find the fourth term of the proportion.
If the relationship between the magnitudes is direct (when one magnitude increases, so does the other; or when one magnitude decreases, so does the other), the rule of three is applied as follows, where a, b and c are known values and x is the unknown to calculate:
a → b
c → x
So:
Being 1 kg equivalent to 1000000 milligrams, In this case the rule of three is applied as follows: if 1 kg equals 1000000 milligrams, 4.56×10⁻² kg equals how many milligrams?
1 kg → 1000000 milligrams
4.56×10⁻² kg → x
So:
<u><em>x=45600 miligrams</em></u>
In summary, the mass of the book is 45600 miligrams.
Learn more:
Answer:
option D
Explanation:
given,
Intensity of sound = 20 dB
distance = 15 m
intensity of sound is increased to = 50 dB
distance between the sound level = ?
Using relation
L₁ = 20 dB L₂ = 50 dB r₁ = 15 m r₂ = ?
r₂ = 0.47 m
r₂ = 47 cm
hence, the correct answer is option D
Adam<span> applies and input force to the pulley as he pulls down to </span>lift the object<span>. As he does this, </span>Adam<span>wonders about how the pulley is </span>helping<span> him
</span>
A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.
Answer:
Explanation:
Given:
- volume of liquid content in the can,
- mass of filled can,
- weight of empty can,
<u>So, mass of the empty can:</u>
<u>Hence the mass of liquid(soda):</u>
<u>Therefore the density of liquid soda:</u>
(as density is given as mass per unit volume of the substance)
<u>Specific weight of the liquid soda:</u>
Specific gravity is the density of the substance to the density of water:
where:
density of water