Answer:
a. 840 mmHg; b. 760 mmHg
Explanation:
The only variables are the pressure and the volume, so we can use Boyle's Law.
p₁V₁ = p₂V₂
a. Pressure at one-tenth less volume
Data:
p₁ = 760 mmHg; V₁ = 5 cm³
p₂ = ?; V₂ = V₁ - 10 %
Calculations:
(i) Calculate V₂
0.1V₁ = 0.1 × 5 cm³ = 0.5 cm³
V₂ = 5 cm³ - 0.5 cm³ = 4.5 cm³
(ii) Calculate p₂


b. Pressure at one-half the volume
Data:
p₁ = 760 mmHg; V₁ = 5 cm³
p₂ = ?; V₂ = ½V₁
Calculations:
(i) Calculate V₂
V₂ = ½V₁ = ½ × 5 cm³ = 2.5 cm³
(ii) Calculate p₂

(iii) Calculate the increase in pressure
Δp = p₂ - p₁ = 1520 mmHg - 760 mmHg = 760 mmHg
The pressure must increase by 760 mmHg.