heat = mass x spec heat x temp rise
40.5=15.4x10^-3xspec heatx11.2
Mercury, Venus, Earth, and Mars are considered terrestrial planets because those planets are mainly composed of metal or rock and are closest to the sun.
Answer:
4.3 * 10 N
Explanation:
To calculate torque, we multiply the distance from the pivot by the perpendicular (the part of the force that acts at right angles to the displacement vector) component of the force to the displacement vector from the pivot.
torque = distance from pivot * perpendicular force
170 Nm= 0.4 m * F
F = 425 N = 4.3 * 10 N rounded off to two significant figures
Answer:
The acceleration is about 9.8 m/s2 (down) when the ball is falling.
Explanation:
The ball at maximum height has velocity zero
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s² (positive downward and negative upward)

The accleration 9.8 m/s² will always be acting on the body in opposite direction when the body is going up and in the same direction when the body is going down. The acceleration on the body will never be zero
Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. A simple example involves a stationary car at the top of a hill. As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases. On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started.
This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.
One can also imagine the energy transformation in a pendulum. When the ball is at the top of its swing, all of the pendulum’s energy is potential energy. When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy. The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms