Answer:
a) the velocity of the implant immediately after impact is 20 m/s
b) the average resistance of the implant is 40000 N
Explanation:
a) The impulse momentum is:
mv1 + ∑Imp(1---->2) = mv2
According the exercise:
v1=0
∑Imp(1---->2) = F(t2-t1)
m=0.2 kg
Replacing:

if F=2 kN and t2-t1=2x10^-3 s. Replacing

b) Work and energy in the system is:
T2 - U(2----->3) = T3
where T2 and T3 are the kinetic energy and U(2----->3) is the work.

Replacing:

Answer:
∆S1 = 0.5166kJ/K
∆S2 = 0.51826kJ/K
Explanation:
Check attachment for solution
Answer =
dial bore gauge
a “dial bore gauge” measures the inside of round holes, such as the bearing journals . can mesure up to 2” and 6” diameter holes .
when ( “ ) is next to a number it means inches fwi - but hope this helped have a good day :)
Answer:
a)temperature=69.1C
b)3054Kw
Explanation:
Hello!
To solve this problem follow the steps below, the complete procedure is in the attached image
1. draw a complete outline of the problem
2. to find the temperature at the turbine exit use termodinamic tables to find the saturation temperature at 30kPa
note=Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
3. Using thermodynamic tables find the enthalpy and entropy at the turbine inlet, then find the ideal enthalpy using the entropy of state 1 and the outlet pressure = 30kPa
4. The efficiency of the turbine is defined as the ratio between the real power and the ideal power, with this we find the real enthalpy.
Note: Remember that for a turbine with a single input and output, the power is calculated as the product of the mass flow and the difference in enthalpies.
5. Find the real power of the turbine
Answer:
Examples of reciprocating motion in daily life are;
1) The needles of a sewing machine
2) Electric powered reciprocating saw blade
3) The motion of a manual tire pump
Explanation:
A reciprocating motion is a motion that consists of motion of a part in an upward and downwards
or in a backward and forward (↔) direction repetitively
Examples of reciprocating motion in daily life includes the reciprocating motion of the needles of a sewing machine and the reciprocating motion of the reciprocating saw and the motion of a manual tire pump
In a sewing machine, a crank shaft in between a wheel and the needle transforms the rotary motion of the wheel into reciprocating motion of the needle.