Answer:
"23.896%" is the right answer.
Explanation:
The given values are:
Mass of NaCl,
= 51.56 g
Mass of H₂O,
= 165.6 g
As we know,
⇒ Mass of solution = 
= 
= 
hence,
⇒ 


Answer:
NaOH is the limiting reactant.
204.9 g of sodium phosphate are formed.
51.94 g of excess reactant will remain.
Explanation:
The reaction that takes place is:
- H₃PO₄ + 3NaOH → Na₃PO₄ + 3H₂O
First we <u>convert the mass of both reactants to moles</u>, using their <em>respective molar masses</em>:
- H₃PO₄ ⇒ 175 g ÷ 98 g/mol = 1.78 mol
- NaOH ⇒ 150 g ÷ 40 g/mol = 3.75 mol
1.78 moles of H₃PO₄ would react completely with (1.78 * 3) 5.34 moles of NaOH. There are not as many NaOH moles so NaOH is the limiting reactant.
--
We <u>calculate the produced moles of Na₃PO₄</u> using the <em>limiting reactant</em>:
- 3.75 mol NaOH *
= 1.25 mol Na₃PO₄
Then we <u>convert moles into grams</u>:
- 1.25 mol Na₃PO₄ * 163.94 g/mol = 204.9 g
--
We calculate how many H₃PO₄ moles would react with 3.75 NaOH moles:
- 3.75 mol NaOH *
= 1.25 mol H₃PO₄
We substract that amount from the original amount:
- 1.78 - 1.25 = 0.53 mol H₃PO₄
Finally we <u>convert those remaining moles to grams</u>:
- 0.53 mol H₃PO₄ * 98 g/mol = 51.94 g
In order to find the answer, use an ICE chart:
Ca(IO3)2...Ca2+......IO3-
<span>some.......0..........0 </span>
<span>less.......+x......+2x </span>
<span>less........x.........2x
</span>
<span>Ca(IO₃)₂ ⇄ Ca⁺² + 2 IO⁻³
</span>
K sp = [Ca⁺²][IO₃⁻]²
K sp = (x) (2 x)² = 4 x³
7.1 x 10⁻⁷ = 4 x³
<span>x = molar solubility = 5.6 x 10</span>⁻³ M
The answer is 5.6 x 10 ^ 3 M. (molar solubility)
Answer:
a) 0,5
Explanation:
If x=6 and y=2, then (2x-4y)/(x+y)=(2*6-4*2)/(6+2)=(12-8)/8=4/8= 0,5
Answer:
The answer is 15 g
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
density of Chloroform = 1.5 g/ml
volume = 10 mL
We have
mass = 1.5 × 10
We have the final answer as
<h3>15 g</h3>
Hope this helps you