Answer:
baking- is a method of cooking food that uses prolonged dry heat, normally in an oven, but also in hot ashes, or on hot stones. The primary source of heat is radiation. Fans within the oven will increase cooking times via convection of the air.
This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.
Answer:
We know the information about atomic size, energy, electronic configuration etc. of atom from the periodic table.
Explanation:
- Periodic table is the arrangement of elements that are arranged according to their properties and electronic configuration.
- In periodic table, on furthest right side of the periodic table, noble gases like He, Ne, Ar etc are arranged.
- The atomic number of element increases while moving from left towards right in the periodic table.
- The metallic character of element decreases as we proceed the table towards right.
- They readily accept electron to fill the valence shell hence becoming more metallic in character.
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
Answer:
14523.55J
Explanation:
The work done by the jogger against gravity is given by the following equation;

where m is the mass, g is acceleration due to gravity taken as
and h is the height of the hill.
Since the length of the hill is 132m and it is inclined at 12 degrees to the horizontal, the height is thus given as follows;

Substituting this into equation (1) with all other necessary parameters, we obtain the following;
