1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
5

Which one of the following describes the motion of the person between points r and s​

Physics
2 answers:
Vlada [557]3 years ago
7 0

There are no accurate descriptions on the list you provided.

tatyana61 [14]3 years ago
3 0

Answer:

IDRK

Explanation:

So yeah that is that

You might be interested in
if the forces are moving in the same direction, ____ the forces. Please help i’m actually so confused!
jasenka [17]

Answer:

Explanation:

the directions may change

Or they will repel and become opposite sides

6 0
3 years ago
Considerando que você comece a caminhar em velocidade constante, inicialmente a 350 m de um ponto referencial escolhido. Você ca
ExtremeBDS [4]

Answer:

a. S(t)=350−1t

Explanation:

To determine the equation of motion you take into account the general form of motion with constant velocity:

S(t)=S_o+vt    ( 1 )

So is the initial position from a specific reference frame. In this case is 350 m.

v is the speed of the motion, in this case is 1m/s. However, the motion is forward the zero point of the reference frame, hence, the speed is - 1m/s.

You replace the values of So and v in the equation ( 1 ) and you obtain:

S(t)=350-(1m/s)t

Hence, the answer is:

a. S(t)=350−1t

- - - - - - - - - - - - - - - - - - - - -

Para determinar a equação do movimento, você leva em consideração a forma geral do movimento com velocidade constante:

             (1)

Assim é a posição inicial de um quadro de referência específico. Neste caso, é de 350 m.

v é a velocidade do movimento, neste caso é de 1m / s. No entanto, o movimento é avançar o ponto zero do quadro de referência, portanto, a velocidade é de - 1m / s.

Você substitui os valores de So ev na equação (1) e obtém:

Portanto, a resposta é:

uma. S (t) = 350-1t, movimento retrógrado

4 0
3 years ago
An electron with a speed of 0.95c is emitted by a supernova, where cc is the speed of light. What is the magnitude of the moment
krok68 [10]

Answer:

2.59×10¯²² Kgm/s

Explanation:

Data obtained from the question include:

Velocity of electron = 0.95c

Momentum =?

Next, we shall determine the velocity of the electron. This can be obtained as follow:

Velocity of electron = 0.95c

Velocity of Light (c) = 3×10⁸ m/s

Velocity of electron = 0.95c

Velocity of electron = 0.95 × 3×10⁸

Velocity of electron = 2.85×10⁸ m/s

Finally, we shall determine the mometum of the electron.

Momentum is simply defined as the product of mass and velocity. Mathematically, it is expressed as:

Momentum = mass x Velocity

Thus, with the above formula, we calculate the momentum of the electron as follow:

Mass of electron = 9.1×10¯³¹ Kg

Velocity of electron = 2.85×10⁸ m/s

Momentum of electron =?

Momentum = mass x Velocity

Momentum = 9.1×10¯³¹ × 2.85×10⁸

Momentum = 2.59×10¯²² Kgm/s

Therefore, the momentum of the electron is 2.59×10¯²² Kgm/s

3 0
3 years ago
The quadriceps muscles pull on the patella simultaneously. Below are the forces from each
Nostrana [21]

Based on the calculation of the resultant of vector forces:

  1. the resultant force due to the quadriceps is 1795 N
  2. the resultant force due to the quadriceps is 1975 N. Training and strengthening the vastus medialis results in a greater force of muscle contraction.

<h3>What is the resultant force due to the quadriceps?</h3>

The resultant of more than two vector forces is given by:

  • F = √Fₓ² + Fₙ²

where:

  • Fₓ is the sum of the horizontal components of the forces
  • Fₙ is the sum of the vertical components of the forces
  • Fx = F₁cosθ + F₂cosθ + F₃cosθ + F₄cosθ
  • Fₙ = F₁sinθ + F₂sinθ + F₃sinθ + F₄sinθ
  • F₁ = 680N, θ = 90 = 30 = 120°
  • F₂ = 220 N, θ = 90 + 16 = 106°
  • F₃ = 600 N, θ = 90 + 15 = 105°
  • F₄ = 480 N, θ = 90 - 35 = 55°

then:

Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 480 * cos 55

Fx = -280.6 N

Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 480 * sin 55

Fₙ = 1773.1 N

then:

F = √(-280.6)² + ( 1773.1)²

F = 1795.16 N

F ≈ 1795 N

Therefore, the resultant force due to the quadriceps is 1795 N

<h3>What would happen if the vastus medialis was trained and strengthened to contract with 720N of force?</h3>

From the new information provided:

  • F₁ = 680N, θ = 90 = 30 = 120°
  • F₂ = 220 N, θ = 90 + 16 = 106°
  • F₃ = 600 N, θ = 90 + 15 = 105°
  • F₄ = 720 N, θ = 90 - 35 = 55°

then:

Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 720 * cos 55

Fx = -142.95 N

Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 720 * sin 55

Fₙ = 1969.72 N

then:

F = √(-142.95)² + ( 1969.72)²

F = 1974.9 N

F ≈ 1975 N

Therefore, the resultant force due to the quadriceps is 1975 N.

Training and strengthening the vastus medialis results in a greater force of muscle contraction.

Learn more about resultant of forces at: brainly.com/question/25239010

3 0
3 years ago
Skater begins to spend with arms held out at shoulder height. The skater wants to match the speed of the spin to the beat of the
Aleksandr [31]

Answer:

the moment of inertia with the arms extended is Io and when the arms are lowered the moment

I₀/I > 1    ⇒   w > w₀

Explanation:

The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,

           L₀ = L_f

           I₀ w₀ = I w

          w =\frac{I_o}{I} w₀

where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms

          I₀ = I_cylinder + 2 m r²

where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.

If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be

        I <I₀

        I₀/I > 1    ⇒   w > w₀

therefore the angular velocity (rotations) must increase

in this way the skater can adjust his spin speed to the musician.

7 0
3 years ago
Other questions:
  • If you place a balloon in the freezer, it will __________.
    8·2 answers
  • How is our planets giant,thermohaline system of warm and cold water like a massive convection current
    5·1 answer
  • How much heat is released to freeze 47.30 grams of copper at its freezing point of 1,085°C? The latent heat of fusion of copper
    5·2 answers
  • Identify the elements that come before iron (Fe) in the periodic table Fe, Co, Cu, K, Ni, Mn
    15·2 answers
  • How much thermal energy does it take to raise the temperature of 2.5 kg of
    5·1 answer
  • Scenario 2: A dam was built California in 1999 to block the Santa Ana River and help generate
    10·1 answer
  • Gina made a poster for plastic recycling week and included this information on her poster:
    7·2 answers
  • 3. Light travels from the Sun to Earth in 8.3 min. Given that the speed of light is 3.00108 m/s, what is the distance in meters
    10·1 answer
  • Camina con otro compañero, al mismo tiempo y al mismo paso. Quién se mueve tú o tu compañero? Razona tu respuesta
    7·1 answer
  • A 10-turn ideal solenoid has an inductance of 4. 0 mh. to generate an emf of 2. 0 v the current should change at a rate of:_____
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!