Answer:
0.36 A. 
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =? 
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =? 
R = Rₑq + R₃ (they are in series connection) 
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =? 
V = IR 
10 = I × 27.73 
Divide both side by 27.73 
I = 10 / 27.73 
I = 0.36 A
Therefore, the current is 0.36 A.