F = m*a
5000 = 2000 * x
5000/2000 = x
2.5 = x
2.5m/s^2 = a
Answer: f = 927.55Hz
Explanation: Since the the tube is open-closed, the length of air and the wavelength of sound passing through the tube is given below
L = λ/4 where λ = wavelength.
speed of sound in air = v = 343m/s.
fundamental frequency of open closed tube = 315Hz
λ = 4L.
v = fλ
343 = 315 * 4L
343 = 1260 * L
L = 343/ 1260
L = 0.27m
In the same tube of length L = 0.27m but different medium ( helium), the speed of sound is 1010m/s.
The length of tube and wavelength are related by the formulae below
L = λ/4, λ=4L
λ = 4 * 0.27
λ = 1.087m.
v = fλ
1010 = f * 1.087
f = 1010/1.807
f = 927.55Hz
Answer:
The load has a mass of 2636.8 kg
Explanation:
Step 1 : Data given
Mass of the truck = 7100 kg
Angle = 15°
velocity = 15m/s
Acceleration = 1.5 m/s²
Mass of truck = m1 kg
Mass of load = m2 kg
Thrust from engine = T
Step 2:
⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:
T = (m1+m2)*g*sinθ
⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes m1*gsinθ .
Resultant force on truck is F = T – m1*gsinθ
F causes the acceleration of the truck: F= m*a
This gives the equation:
T – m1*gsinθ = m1*a
T = m1(a + gsinθ)
Combining both equations gives:
(m1+m2)*g*sinθ = m1*(a + gsinθ)
m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ
m2*g*sinθ = m1*a
Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:
m2*g*sinθ = (7100 – m2)*a
m2*g*sinθ = 7100a – m2a
m2*gsinθ + m2*a = 7100a
m2* (gsinθ + a) = 7100a
m2 = 7100a/(gsinθ + a)
m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)
m2 = 2636.8 kg
The load has a mass of 2636.8 kg
Answer:
Speed of the airplane 10.0 s later = 12.2 m/s
Explanation:
Mass of Boeing 777 aircraft = 300,000 kg
Braking force = 445,000 N
Deceleration

Initial velocity, u = 27 m/s
Time , t = 10 s
We have equation of motion, v =u +at
v = 27 + (-1.48) x 10 = 27 - 14.8 = 12.2 m/s
Speed of the airplane 10.0 s later = 12.2 m/s