Answer: i inserted two just incase but tell me if i am wrong
Step-by-step explanation:
Answer:
ASA
Step-by-step explanation:
You can show the angles at either end of segment BC in triangles MBC and LCB are congruent, so you have two angles and the segment between. The appropriate theorem in such a case is ASA.
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
<h3>What is the surface area of a truncated prism?</h3>
The <em>surface</em> area of the <em>truncated</em> prism is the sum of the areas of its six faces, which are combinations of the areas of rectangles and <em>right</em> triangles. Then, we proceed to determine the <em>surface</em> area:
A = (12 cm) · (4 cm) + 2 · (3 cm) · (4 cm) + 2 · (12 cm) · (3 cm) + 2 · 0.5 · (12 cm) · (5 cm) + (5 cm) · (4 cm) + (13 cm) · (4 cm)
A = 48 cm² + 24 cm² + 72 cm² + 60 cm² + 20 cm² + 52 cm²
A = 276 cm²
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
To learn more on surface areas: brainly.com/question/2835293
#SPJ1
Answer:
The answer would be 0.6666666666666666666666666666666666666666667
Step-by-step explanation:
6/9 equals 0.66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667