Answer:
n= 0.03 moles
Explanation:
Using the ideal gas law:
PV=nRT
nRT=PV
n= PV/RT
n: moles
P: pressure in atm
V= volume in L
R= Avogadro's constant = 0.0821
T= Temperature in K => ºC+273.15
n= (0.925 atm)(0.80 L) / (0.0821)(300.15 K)
n= 0.03 moles
Answer: The molar concentration of oxygen gas in water is
.
Explanation:
Partial pressure of the
gas = 685 torr = 0.8905 bar
1 torr = 0.0013 bar
According Henry's law:

Value of Henry's constant of oxygen gas at 20 °C in water = 34860 bar


Let the number of moles of
gas in 1 liter water be n.
1 Liter water = 1000 g of water
Moles of water in 1 L 




Molar concentration of oxygen gas in 1 L of water:

The molar concentration of oxygen gas in water is
.
Electron configuration is the electron distribution in the molecular and atomic orbital. An element with configuration ns²np¹ will be in the 3A group. Thus, option B is correct.
<h3>What is electronic configuration?</h3>
The electronic configuration has been the arrangement and distribution of the sub-atomic particle, an electron in the atomic shells.
The electronic configuration given is, ns²np¹. Here, there are three valence electrons in the outermost orbit. As it has been known that the number of the valence electron gives the number of the group.
Therefore, option B. 3A group or 13 group is the correct option.
Learn more about electronic configuration here:
brainly.com/question/11182760
#SPJ4
Your question is incomplete, but most probably your full question was, An element with the general electron configuration for its outermost electrons of ns2np1 would be in which group?
a. 2a
b. 3a
c. 4a
d. 5a
e. 8a
When particles collide with the surface of the solid.
Explanation:
The molar mass of the compounds are incorrect