Answer:
Part a)

Part b)

Explanation:
Two sleds are connected by a rope
mass of each sled is given as

now we know that dog exert pulling force on the rope connected to first sled

Part a)
By newton's first law we know that




Part b)
As we know that force between two ropes will pull the sled behind
so we will have



Answer:
the normal force on the rock acts perpendicular to the bowl's surface.
Explanation:
As we know that Normal force is the reaction force of two contact surfaces which always act perpendicular to the contact surfaces
Here we know that the rock is moving inside the bowl
So Normal force on the rock must perpendicular to the surface of the bowl which always passes through the center of the bowl.
Since the rock is moving in vertical plane so it must have two acceleration
1) Tangential acceleration which will increase the magnitude of the speed along the tangential path
2) Centripetal acceleration which will change the direction of the rock
So here only correct option will be
the normal force on the rock acts perpendicular to the bowl's surface.
Answer:
C) T
Explanation:
= Mass attached to an ideal spring
= Amplitude of the motion
= Time period of oscillation
= Spring constant of the spring
= Amplitude of the motion
Time period of oscillation of the mass attached to the spring is given as

So we see that the time period does not depend on the amplitude. hence the period of oscillation remains the same.
Power is the amount of energy consumed per unit time. Having no direction, it is a scalar quantity. <span>As is implied by the equation for </span>power<span>, a unit of </span>power <span>is equivalent to a unit of work divided by a unit of time. The formula would be as follows:
P = W/t
We calculate as follows:
500 W = 15000 J / t
t = 30 s</span>