Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>
When a balloon is rubbed with a wool cloth, e<span>lectrons move from the atoms in the balloon to the atoms in the cloth, causing the cloth to have a negative charge. Therefore, the answer is B. Before they were rubbed together, they both had balanced charges. However, after rubbing them, the wool is left with the positive charge, and the balloon with the negative. This causes the atoms in the cloth to flow to the balloon, leaving the cloth with a negative charge.</span>
<h2><em>the correct answer is </em></h2><h2><em>A) 111.36 seconds</em></h2><h2><em>HOPE IT HELPS (◕‿◕✿) </em></h2>
The second one (4.1 kg ball)
This is because the mxv is greater than the other one.
For the 4.1kg ball, the force it’s moving on is 4.92N
As for the 3.2kg ball, it’s moving with a force of 0.9N. Much less than the other one.
Answer:
The avarage power of the body is 96.898 watts.
Explanation:
We must notice that given definition of power implies a constant consumption of energy, so that we should assume that energy consumption is constant. A Calorie is equal to 4186 joules. If we know that
and
, the power of body, measured in watts, is:


The avarage power of the body is 96.898 watts.