Answer:
ionized particles from the sun.
* interactions in radiation belts.
* the friction of the planet in the solar wind
q = +9 10⁵ C
Explanation:
Due to being made up of matter, the planet Earth has a series of positive and negative charges, in general these charges should be balanced and the net charge of the planet should be zero, but there are several phenomena that introduce unbalanced charges, for example:
* ionized particles from the sun.
* interactions in radiation belts.
* the friction of the planet in the solar wind
This creates that the planet has a net electrical load
We can roughly calculate the charge of the planet
E = k q / r²
q = E r² / k
let's calculate
q = 200 (6.37 10⁶)²/9 10⁹
q = +9 10⁵ C
This question requires the use of the equation of motion:
v = u + at [v is final velocity (0), u is initial velocity (24), a is acceleration, t is time (13)]
to calculate the acceleration. This can then be multiplied by the mass of the plane to obtain the net force via:
F = ma (F is force, m is mass, a is acceleration)
First, we calculate the acceleration:
0 = 24 + 13(a)
a = -24/13 m/s^2
The force is then:
F = 90000 * (-24/13)
F = -1.66*10^5 Newtons
The negative sign indicates that the force and acceleration are in the opposite direction as the velocity (since we took velocity to be positive)
The first rubber balloon was made by Professor Michael Faraday in 1824, out of two sheets of rubber whose edges were pressed together. Hot air balloonwas the balloon to make the first recorded manned flight. It was made by the Montgolfier brothers and launched on 21 November 1783.
Answer: 529.9 Hz
Explanation:
Here we need to use the Doppler equation, so we have:
f' = f*(v + v0)/(v - vs)
Here, f is the frequency = 500Hz
v is the velocity of the wave, = 334m/s
v0 is the velocity of the observer = 20m/s
vs is the velocity of the source = 0m/s
Then we have:
f' = 500Hz*(334m/s + 20m/s)/(334m/s) = 529.9 Hz
Answer:
B= 55.6×10^(-7) Tesla
Explanation:
B= μoI/(2πr)
B: magnetic field strength
μo: permeability of free space and is equal to 4π×10^(-7) T.m/A
r: distance from the wire
I : current in the wire
B= (4π×10^(-7)×125)/(2π×4.5)
B= 55.6×10^(-7) Tesla