Answer:
It has a mass of 40 kg.
Explanation:
Because Force = mass x Acceleration or F = m a, we could say that the mass is force/acceleration which in your case is 2,400/60 which equals 40 kg.
Answer:
<em>Angular displacement=68.25 rad</em>
Explanation:
<u>Circular Motion</u>
If the angular speed varies from ωo to ωf in a time t, then the angular acceleration is given by:

The angular displacement is given by:

The wheel decelerates from ωo=13.5 rad/s to ωf=6 rad/s in t=7 s, thus:



Thus, the angular displacement is:



Angular displacement=68.25 rad
Answer:
Energy, E = 178.36 J
Explanation:
It is given that,
Mass 1, 
Mass 2, 
Mass 3, 
Height from which they are dropped, h = 1.3 m
Let m is the energy used by the clock in a week. The energy is equal to the gravitational potential energy. It is given by :


E = 178.36 J
So, the energy used by the clock in a week is 178.36 Joules. Hence, this is the required solution.
To break this problem down, let's start with what we know. The equation given finds one component of the velocity and multiplies it by the change in time. This will not find the acceleration that the first two answers say it will, meaning that the answer isn't A or B.
That leaves us with the final two answers, C and D. If the projectile was launched horizontally and we were trying to find the horizontal displacement, we wouldn't need to use cosθ to find the horizontal velocity, meaning that our answer is most likely C) <span>the horizontal displacement of a projectile launched at an angle!</span><span />