Answer:
The magnitude of the magnetic force this particle experiences is
.
Explanation:
Given that,
Velocity v= (3i-5j+k) m/s
Magnetic field B=(i+2j-k) T
We need to calculate the value 

We need to calculate the magnitude of the magnetic force this particle experiences
Using formula of magnetic force

Put the value into the formula



Hence, The magnitude of the magnetic force this particle experiences is
.
Answer:
Length = 2.32 m
Explanation:
Let the length required be 'L'.
Given:
Resistance of the resistor (R) = 3.7 Ω
Radius of the rod (r) = 1.9 mm = 0.0019 m [1 mm = 0.001 m]
Resistivity of the material of rod (ρ) = 
First, let us find the area of the circular rod.
Area is given as:

Now, the resistance of the material is given by the formula:

Express this in terms of 'L'. This gives,

Now, plug in the given values and solve for length 'L'. This gives,

Therefore, the length of the material required to make a resistor of 3.7 Ω is 2.32 m.
Hello!
===
When objects are heated, their molecules tend to vibrate fast. As they vibrate, the space between each atom increases. This keeps on happening, and the object expands until it has cooled down.
===
Hope this helps! :)
Entropy is an extensive property of a thermodynamic system. It quantifies the number Ω of microscopic configurations (known as microstates) that are consistent with the macroscopic quantities that characterize the system (such as its volume, pressure and temperature).[1] Under the assumption that each microstate is equally probable, the entropy
S
S is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant