Velocity (v) is a vector quantity that measures displacement (or change in position, Δs) over the change in time (Δt), represented by the equation
v = Δs/Δt.
If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Answer:

Explanation:
the relation between current, voltage and resistance in an electrical circuit is given by Ohm's law:

where V is the voltage, I is the current and R is the resistance. In this problem, the current is I=2 A, the voltage is V=120 V, therefore we can arrange the previous equation and find the resistance:

An electrical <span>current is </span>caused<span> by </span>flow<span> of free electrons from one atom to another. </span>
Weight is different (but mass is the same)