Answer:
q = -6464.9 kJ
Explanation:
We are given that the heat of combustion is ∆H° = −394 kJ per mol of carbon.Therefore what we need to do is calculate how many moles of C are in the lump of coal by finding its mass since the density is given.
vol = 5.6 cm x 5.1 cm x 4.6 cm = 131.38 cm³
m = d x v = 1.5 g/cm³ x 131.38 cm³ = 197.06 g
mol C = m/MW = 197.06 g/ 12.01g/mol = 16.41 mol
q = −394 kJ /mol C x 16.41 mol C = -6464.9 kJ
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
The two main types of weathering are material and chemical.
Mechanical weathering is the disintegration of rock into smaller and smaller fragments.
Chemical weathering transforms the original material into a substance with a different composition and different physical characteristics.
Answer : The final volume of gas will be, 26.3 mL
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.974 atm
= final pressure of gas = 0.993 atm
= initial volume of gas = 27.5 mL
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the final volume of gas will be, 26.3 mL
Don’t worry about it, let me do your homework!
Born February 27, 1869, Alice Hamilton was an American physician, research scientist, and author who is best known as a leading expert in the field of occupational health and a pioneer in the field of industrial toxicology. She was also the first woman appointed to the faculty of Harvard University.