Answer:
∫ C ( y + e√x) dx  +  ( 2x + cosy² ) dy = 1/3
Step-by-step explanation: See Annex
Green Theorem establishes:
∫C ( Mdx  +  Ndy )  = ∫∫R ( δN/dx  -  δM/dy ) dA
Then
∫ C ( y + e√x) dx  +  ( 2x + cosy² ) dy
Here
M = 2x  + cosy²           δM/dy  =  1
N = y + e√x                 δN/dx  =  2
δN/dx  -  δM/dy  =  2  -  1   = 1
∫∫(R) dxdy   ∫∫ dxdy
Now integration limits  ( see Annex)
dy  is from   x  = y²    then     y = √x    to  y = x²   and for dx
dx   is from 0   to  1 then
∫ dy    = y | √x   ;   x²      ∫dy    =  x² - √x
And
∫₀¹ ( x² - √x ) dx    =  x³/3  - 2/3 √x |₀¹    =   1/3 - 0
∫ C ( y + e√x) dx  +  ( 2x + cosy² ) dy = 1/3
 
        
             
        
        
        
The third one: No, yes, no
        
             
        
        
        
Answer:
Im pretty sure that is an obtuse angle
Step-by-step explanation:
Hope that helps