We are going to use this equation:
ΔT = - i m Kf
when m is the molality of a solution
i = 2
and ΔT is the change in melting point = T2- 0 °C
and Kf is cryoscopic constant = 1.86C/m
now we need to calculate the molality so we have to get the moles of NaCl first:
moles of NaCl = mass / molar mass
= 3.5 g / 58.44
= 0.0599 moles
when the density of water = 1 g / mL and the volume =230 L
∴ the mass of water = 1 g * 230 mL = 230 g = 0.23Kg
now we can get the molality = moles NaCl / Kg water
=0.0599moles/0.23Kg
= 0.26 m
∴T2-0 = - 2 * 0.26 *1.86
∴T2 = -0.967 °C
According to Avogadro's number there are 62.53 atoms of chlorine in 1.1x 10
moles of Cl atoms.
<h3>What is Avogadro's number?</h3>
Avogadro's number is defined as a proportionality factor which relates number of constituent particles with the amount of substance which is present in the sample.
According to the definitions, Avogadro's number depend on determined value of mass of one atom of those elements.It bridges the gap between macroscopic and microscopic world by relating amount of substance with number of particles.
Number of atoms can be calculated using Avogadro's number as follows: mass/molar mass×Avogadro's number or number of moles×Avogadro's number.
ON substitution in above formula number of atoms=1.1×10²¹×6.023×10²³=62.53 atoms
Thus, there are 62.53 chlorine atoms in 1.1x 10
moles of Cl atoms.
Learn more about Avogadro's number,here:
brainly.com/question/11907018
#SPJ1
Answer:
0.212
Explanation:
(5.30g) / (5.30g + 19.7g)
Answer:
.
Explanation:
Electrons are conserved in a chemical equation.
The superscript of
indicates that each of these ions carries a charge of
. That corresponds to the shortage of one electron for each
ion.
Similarly, the superscript
on each
ion indicates a shortage of three electrons per such ion.
Assume that the coefficient of
(among the reactants) is
, and that the coefficient of
(among the reactants) is
.
.
There would thus be
silver (
) atoms and
aluminum (
) atoms on either side of the equation. Hence, the coefficient for
and
would be
and
, respectively.
.
The
ions on the left-hand side of the equation would correspond to the shortage of
electrons. On the other hand, the
ions on the right-hand side of this equation would correspond to the shortage of
electrons.
Just like atoms, electrons are also conserved in a chemical reaction. Therefore, if the left-hand side has a shortage of
electrons, the right-hand side should also be
electrons short of being neutral. On the other hand, it is already shown that the right-hand side would have a shortage of
electrons. These two expressions should have the same value. Therefore,
.
The smallest integer
and
that could satisfy this relation are
and
. The equation becomes:
.
All organisms need four types of organic molecules: nucleic acids, proteins, carbohydrates and lipids; life cannot exist if any of these molecules are missing.