Since D=M/V, the answer would be 2.7
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
<u>F₃ = 122.88 N</u>
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
<u>θ₃ = 20.63°</u>
Answer:
0.423m
Explanation:
Conversion to metric unit
d = 4.8 cm = 0.048m
Let water density be 
Let gravitational acceleration g = 9.8 m/s2
Let x (m) be the length that the spring is stretched in equilibrium, x is also the length of the cylinder that is submerged in water since originally at a non-stretching position, the cylinder barely touches the water surface.
Now that the system is in equilibrium, the spring force and buoyancy force must equal to the gravity force of the cylinder. We have the following force equation:

Where
N is the spring force,
is the buoyancy force, which equals to the weight
of the water displaced by the submerged portion of the cylinder, which is the product of water density
, submerged volume
and gravitational constant g. W = mg is the weight of the metal cylinder.

The submerged volume would be the product of cross-section area and the submerged length x

Plug that into our force equation and we have



Answer:
It always acurs after a 1st quarter
do you have photo?
Explanation:
It is the energy of the electrons I believe