Answer:
0.2
Explanation:
The given parameters are;
The acceleration of the train, a = 0.2·g
The mass of the person standing on the train = m
Let μ represent the coefficient of static friction, we have;
The force acting on the person, F = m × a = m × 0.2·g
The force of friction acting between the feet and the floor,
= m·g·μ
For the person not to slide we have;
The force acting on the person = The force of friction acting between the feet and the floor
F = 
∴ m × 0.2·g = m·g·μ
From which we get;
0.2 = μ
The coefficient of static friction that must exist between the feet and the floor if the person is not to slide, μ = 0.2.
Both believe that an atom contains negative charges and positive charges.
But both were different in the placement of charges
The electron is accelerated through a potential difference of

, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:

where
m is the electron mass
v is the final speed of the electron
e is the electron charge

is the potential difference
Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:

Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:

where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
The tiny ripples on the soup are not only similar to wind-generated
waves ... they ARE wind-generated waves. This is a big part of the
reason why they bear such an uncanny resemblance.