Answer:
The electric field always decreases.
Explanation:
The electric field due to a point charge is given by :

Where
k = electric constant
q = charge
r = distance from the charge
It is clear from the above equation that as the distance from the charge particle increases the electric field decreases. As you move away from a positive charge distribution, the electric field always decreases. Hence, the correct option is (c) "Always decreases".
<span>Since forces are vector quantities, we must indicate direction using positive and negative values. East will be assigned positive and west will be negative. Friction will act as a negative force since it impedes action. To calculate the net force we sum the vector quantities, as follows. Net force equals 50n which is derived by the following calculation: 300n-220n-30n.</span>
Answer: c
Explanation:
C Air is a compound of two or more components that keep their own identifying properties, while water is composed of mixtures that combine to form a compound.
The strength of the gravitational field is given by:

where
G is the gravitational constant
M is the Earth's mass
r is the distance measured from the centre of the planet.
In our problem, we are located at 300 km above the surface. Since the Earth radius is R=6370 km, the distance from the Earth's center is:

And now we can use the previous equation to calculate the field strength at that altitude:

And we can see this value is a bit less than the gravitational strength at the surface, which is

.
Answer:
Alpha decay will produce a daughter nucleus with more protons and beta decay will produce a daughter nucleus with fewer protons than the parent nucleus has.