Mass of SO2 = mass of sulfur+ mass of oxygen
⇒ 64 g= mass of sulfur+ 32 g
⇒ mass of sulfur= 64 g-32 g
⇒ mass of sulfur= 32 g.
There is 32 g of sulfur in 64 g of SO2~
Answer:
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Explanation:
2 NO (g) + O₂ (g) ⇄ 2NO₂ (g)
Let's apply the thermodynamic formula to calculate the ΔG
ΔG = ΔG° + R .T . lnQ
We don't know if the gases are at equilibrium, that's why we apply Q (reaction quotient)
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln Q
How can we know Q? By the partial pressures (Qp)
P NO = 0.450atm
PO₂ = 0.1 atm
PNO₂ = 0.650 atm
Qp = [NO₂]² / [NO]² . [O₂]
Qp = 0.650² / 0.450² . 0.1 = 20.86
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln 20.86
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Molarity is measured in moles per Liter. If there are 1.35 g/mL, find out how many grams there are in a liter of solution.
If there are 1000 mL in one liter, we can multiply by 1000 to get g/L
1.35 g/mL x 1 Liter/1000 mL = 1350 g per Liter of solution
By weight, the NaOH is 33% or .33
1350 g x .33 = 445.5 g of NaOH
Molar mass of NaOH is 39.997 g
445.5 g x 1 mol NaOH/39.997 g = 11.13833538 moles per Liter
Rounded to significant figures, the answer is 11 mol/L NaOH
6.02 x 10²⁴ molecules of C2H6O
Magnetizing steel is a physical change, not a chemical change.