A, B, C, and D, because they are changing from a solid to a liquid, liquid to solid, and solid to gas. Phase changes are when a solid, liquid, or gas, turns into a solid, liquid, or gas. Ex. Ice melting is a solid changing into a liquid. Hope this helps!
Nuclear energy is called the energy obtained by the transformation of atomic nuclei, so small and heavy clusters of particles inside the atom. Nuclear energy can be produced in two ways, by cleavage or synthesis of nuclei. Heavy nuclei of radioactive elements such as uranium or plutonium, can be split into two nuclei. By splitting are released from the nucleus of neutrons that collide with other nuclei causing them to split and subsequent emission of neutrons. This is called a chain reaction. The condition calls self-sustaining nuclear reaction is slowing down neutrons. For this purpose, a special substance, called moderator. The neutrons collide with the molecules of the moderator precipitate heating speed while the moderator. The resulting heat heats the water so that a couple who drives a turbine generating electricity. Another way of producing nuclear energy is nuclear fusion, in which nuclei combine to light elements. So far, fusion, however, failed to carry out so that it can be applied to the economy as a source of energy.
Explanation:
I think B a chemical change
Answer:
Substitution mutation
Explanation:
A substitution mutation is a type of mutation in which one or more nucleotide base is replaced by another in a sequence. This will result in the replacement of one or more amino acid in the amino acid sequence.
This is the case in this question where the original amino acid sequence was given as: Leucine – Alanine – Glycine – Leucine. After mutation, the following mutated sequence was produced: Leucine – Alanine – Valine – Leucine.
As illustrated above, one would notice that there is replacement of GLYCINE amino acid by VALINE in the mutated sequence, hence, it is an example of SUBSTITUTION MUTATION.
<span>In one atom, the ionization energy is the</span> energy needed remove one electron.