Answer: 1.14 N
Explanation : 
As any body submerged in a fluid, it receives an upward force equal to the weight of the fluid removed by the body, which can be expressed as follows:
Fb = δair . Vb . g = 1.29 kg/m3 . 4/3 π (0.294)3  m3. 9.8 m/s2
Fb = 1.34 N
In the downward direction, we have 2 external forces acting upon the balloon: gravity and the tension in the line, which sum must be equal to the buoyant force, as the balloon is at rest.
We can get the gravity force as follows:
Fg = (mb +mhe) g  
The mass of helium can be calculated as the product of the density of the helium times the volume of the balloon (assumed to be a perfect sphere), as follows:
MHe = δHe . 4/3 π (0.294)3 m3 = 0.019 kg
Fg = (0.012 kg + 0.019 kg) . 9.8 m/s2 = 0.2 N
Equating both sides of Newton´s 2nd Law in the vertical direction:
T + Fg = Fb
T = Fb – Fg = 1.34 N – 0.2 N = 1.14 N
 
        
             
        
        
        
Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
 
        
             
        
        
        
Answer:
Gamma rays
Explanation:
Gamma rays is at the end of the electromagnetic spectrum, and has the highest energy. It propagates through space at 3x10^8 m/s and has the smallest wavelength and the highest frequency. It is given off by atoms of element as they undergo nuclear disintegration. 
 
        
                    
             
        
        
        
To be honest I’m not sure you might want to ask Newton as he’s an expert best of luck
        
             
        
        
        
As these are distances created by moving in a straight line, using a trigonometric analysis can solve the missing single straight-line displacement. Looking at the 48m and 12m movements as legs of a triangle, obtaining the hypotenuse using the pythagorean theorem will yield us the correct answer.
This is shown below:
c^2 = 48^2 + 12^2
c = sqrt(2304 + 144)
c = sqrt(2448)
c = 49.48 m
To obtain the angle at which Anthony walks 49.48, we obtain the arc tangent of (12/48). This is shown below:
arc tan (12/48) =14.04 degrees.
Therefore, Anthony could have walked 49.48 m towards the S 14.04 W direction.