Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.
Answer:
The magnitude of the tension in the cable, T is 1,064.315 N
Explanation:
Here we have
Length of beam = 4.0 m
Weight = 200 N
Center of mass of uniform beam = mid-span = 2.0 m
Point of attachment of cable = Beam end = 4.0 m
Angle of cable = 53° with the horizontal
Tension in cable = T
Point at which person stands = 1.50 m from wall
Weight of person = 350 N
Therefore,
Taking moment about the wall, we have
∑Clockwise moments = ∑Anticlockwise moments
T×sin(53) = 350×1.5 + 200×2
T = 850/sin(53) = 1,064.315 N.
Answer: The speed at the first quarter checkpoint is 0.74 m/s. The speed at the second quarter checkpoint is 1.40 m/s. The speed at the third quarter checkpoint is 1.61 m/s. The speed at the finish line is 1.89 m/s.
Explanation: I did the assignment and got it correct :)
Answer:
Given, Apparent weight(W₂)=4.2N
Weight of liquid displaced (u)=2.5N
Let weight of body in air = W₁
Solution,
U=W₁-W₂
W₁=4.2=2.5=6.7N
∴Weight of body in air is 6.7N