'Gram', 'kilogram', and 'metric ton' are units of mass, not weight.
'Pound' can be either a unit of mass or of force. Most people
use it most of the time to mean weight.
Answer:

Explanation:
One of the first propulsion characteristics given in the example is that all engines are equal.
In this way if we have 4 engines running at the same time, it means that its capacity is 100%.
Under this premise, if 100% is found, the Jet is capable of reaching a speed of 8.7m / s ^ 2.
However, the question is, what would happen if 2.4 "Engines" now work.
To do this then we make a simple equivalence,
If 4 engines is the equivalent of 100%, when would it be 2.4 engines?

In this way it would mean that the body could be driven to 60% of its total.
So

To solve this problem we will use the mathematical definition of the light years in metric terms, from there, through the kinematic equations of motion we will find the distance traveled as a function of the speed in proportion to the elapsed time. Therefore we have to
means Light Year
Then

If we have that

Where,
v = Velocity
x = Displacement
t = Time
We have that
= Speed of light





Therefore will take 14.399 years
Answer:
The magnitude of the net electric field is:

Explanation:
The electric field due to q1 is a vertical positive vector toward q1 (we will call it E1).
On the other hand, the electric field due to q2 is a horizontal positive vector toward q2(We will call it E2).
Knowing this, the <u>magnitude of the net electric</u> field will be the<u> E1 + E2. </u>
Let's find first E1 and E2.
The electric field equation is given by:

Where:
- k is the Coulomb constant (k = 9*10^{9} Nm²/C²)
- q1 is the first charge
- d1 is the distance from q1 to P


And E2 will be:



Finally, we need to use the Pythagoras theorem to find the magnitude of the net electric field.



I hope it helps you!
Answer:
H₀ = 1.6 x 10⁻¹⁸ s⁻¹
Explanation:
The Hubble's Constant can be found by the following formula:

where,
H₀ = Hubble's Constant = ?
v = speed of galaxy = 30000 km/s = 3 x 10⁷ m/s
D = Distacance = 600 Mpc = (6 x 10⁸ pc)(3.086 x 10¹⁶ m/1 pc)
D = 18.52 x 10²⁴ m
Therefore,

<u>H₀ = 1.6 x 10⁻¹⁸ s⁻¹</u>