Answer:
ΔT = 0.02412 s
Explanation:
We will simply calculate the time for both the waves to travel through rail distance.
FOR THE TRAVELING THROUGH RAIL:

FOR THE WAVE TRAVELING THROUGH AIR:

The separation in time between two pulses can now be given as follows:

<u>ΔT = 0.02412 s</u>
Each side has to have at least 44 horses
F61160 N. This is further explained below.
<h3>What is the force?</h3>
Generally, We are only interested in the component that operates horizontally since the vertical components all cancel each other out. The pressure difference works on the hemisphere to generate a normal force all over the surface, but we are only concerned with that force's horizontal component. This may be determined by supposing the hemispheres to be two flat circular plates of the same radius as the hemispheres that have been forced together.
Therefore, force is equal to pressure multiplied by area, which is
F= (970 -15 )( * (0.45 m)2)
F=60754 N for each side.
Therefore, each side has to have at least 44 horses
44* 1390 = 61160 N
Read more about force
brainly.com/question/13191643
#SPJ1
Answer:14 m/s
Explanation:
Kinetic energy(ke)=175J
Momentum(M)=25kgm/s
Speed=v
Mass=m
Ke=(m x v x v)/2
175=(mv^2)/2
Cross multiply
175 x 2=mv^2
350=mv^2
Momentum=mass x velocity
25=mv
m=25/v
Substitute m=25/v in 350=mv^2
350=25/v x v^2
350=25v^2/v
v^2/v=v
350=25v
v=350/25
v=14 m/s
An eclipse is a phenomenon of an astronomical object being obscured by something. In this case, it is the Moon that is being obscured from sunlight by Earth's shadow. Answer is D.
Answer:
The detailed calculations are shown below;
Explanation:
a)The maximum acceleration of the particle:
It is seen that the maximum change in velocity is at the time between 8s to 10s.
Maximum acceleration: 
= 
= 10 m/
b) The deceleration of the particle
The velocity of particle is decreased after 10s so,
deceleration = - 
= - 6.67 m/
c)The total distance traveled by the particle = Area under the curve
=
* 4*20 + 4*20 +
* 2*20+ 2*20+
* 40*16
= 290 m
d)The average velocity of the particle = 
= 
= 18.12 m/s