Answer: 1.51 km
Explanation:
<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.
Or, 
Where Q1 and Q2 are magnitude of two charges and r is distance between them:
<u>Given:</u>
Q1 = Charge near top of cloud = 48.8 C
Q2 = Charge near the bottom of cloud = -41.7 C
Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N
k = 8.99 x 109Nm^2/C^2
<u>So,</u>

Therefore, the separation between the two charges (r) = 1.51 km
Answer:
I hope it is no too late
Explanation:
hmmm,
In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. ... If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced.
Answer:
The amount of electrons that flow in the given time is 3.0 C.
Explanation:
An electric current is defined as the ratio of the quantity of charge flowing through a conductor to the time taken.
i.e I =
...................(1)
It is measure in Amperes and can be measured in the laboratory by the use of an ammeter.
In the given question, I = 1.5A, t = 2s, find Q.
From equation 1,
Q = I × t
= 1.5 × 2
= 3.0 Coulombs
The amount of electrons that flow in the given time is 3.0 C.