You shall use the equation for force given by the second Law of Newton, this is F = m*a, where F is the net force that acts over the object, m is the mass of the object and a is the acceleration that the object will acquire. From that equation you can find a = F/m, which means that a is direct proportional to F and invsersely related to m. So, small masses accelerate faster than large masses, and <span>the answer is the option B. the small mass accelerates faster.</span>
Answer is B -273 degrees C
Answer: solar winds
Explanation:
<u>A solar wind is composed of high speed charged particles (plasma) ejected from the Corona- the upper atmosphere of the Sun. </u>When the temperature of the corona crosses 2 million degrees, the rapidly moving particles are not held by the Sun's gravity and release away into the solar system.
<u>The Solar wind travels throughout the solar system and carries magnetic clouds along with it. It could be damaging to life if it could reach the surface but the planet's magnetic field shields us and redirects the material beyond it. </u>
Solar wind must have reached the planet Jupiter and Dr. Tate and Dr. Ramirez would be studying its effects.
All you can say about it is that it then vibrates perpendicular to the x-axis. But that could be up and down parallel to the y-axis, in and out parallel to the z-axis, or some of it in every possible direction perpendicular to the x-axis. We "polarize" the light when we want to pick out only one perpendicular direction and stop all the others.
The fundamental frequency of the tube is 0.240 m long, by taking air temperature to be
C is 367.42 Hz.
A standing wave is basically a superposition of two waves propagating opposite to each other having equal amplitude. This is the propagation in a tube.
The fundamental frequency in the tube is given by

where, 
Since, T=37+273 K = 310 K
v = 331 m/s

Using this, we get:

Hence, the fundamental frequency is 367.42 Hz.
To learn more about Attention here:
brainly.com/question/14673613
#SPJ4