Answer:
The work done by friction was 
Explanation:
Given that,
Mass of car = 1000 kg
Initial speed of car =108 km/h =30 m/s
When the car is stop by brakes.
Then, final speed of car will be zero.
We need to calculate the work done by friction
Using formula of work done



Put the value of m and v



Hence, The work done by friction was 
Answer:
true
Explanation:
Here we have assumed that increasing the mass of a glove will increase the surface area.
Injury is caused by the application of pressure at a point on the body. The application of pressure takes place via the area of the gloves. Pressure is given by

where
F = Force
A = Area to which the force is applied
So, a bigger glove will increase the surface area and reduce the pressure resulting in a lower chance of injury.
Hence, the statement is true.
Explanation:
Given that,
Charge 1, 
Charge 2, 
Distance between charges, r = 0.0209 m
1. The electric force is given by :


F = -492.95 N
2. Distance between two identical charges, 
Electric force is given by :




Hence, this is the required solution.
The 'formulas' to use are just the definitions of 'power' and 'work':
Power = (work done) / (time to do the work)
and
Work = (force) x (distance) .
Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.
Power = (force x distance) / (time)
From the sheet, we know the power, the distance, and the time. So we can use this one formula to find the force.
Power = (force x distance) / (time)
Multiply each side by (time): (Power) x (time) = (force) x (distance)
Divide each side by (distance): Force = (power x time) / (distance).
Look how neat, clean, and simple that is !
Force = (13.3 watts) x (3 seconds) / (4 meters)
Force = (13.3 x 3 / 4) (watt-seconds / meter)
Force = 39.9/4 (joules/meter)
<em>Force = 9.975 Newtons</em>
Is that awesome or what !