1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VladimirAG [237]
3 years ago
13

A police car is traveling north on a straight road at a constant 16.0 m/s. An SUV traveling north at 30.0 m/s passes the police

car. The driver of the SUV suspects he may be exceeding the speed limit, so just as he passes the police car he lets the SUV slow down at a constant 1.80 m/s2. How much time elapses from when the SUV passes the police car to when the police car passes the SUV?
Physics
1 answer:
Nastasia [14]3 years ago
8 0

Answer:

It will take 15.55s for the police car to pass the SUV

Explanation:

We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:

1. x=x_{0}+vt

2. x=x_{0}+v_{0}t+\frac{at^{2}}{2}

Since both cars will travel the same distance x, we can equal both formulas and solve for t:

vt = v_{0}t+\frac{at^2}{2}\\\\   16\frac{m}{s}t =30\frac{m}{s}t-\frac{1.8\frac{m}{s^{2}} t^{2}}{2}

We simplify the fraction present and rearrange for our formula so that it equals 0:

0.9\frac{m}{s^{2}} t^{2}-14\frac{m}{s}t=0 \\\\ t(0.9\frac{m}{s^{2}}t-14\frac{m}{s})=0

In the very last step we factored a common factor t. There is two possible solutions to the equation at t=0 and:

0.9\frac{m}{s^{2}}t-14\frac{m}{s}=0 \\\\  0.9\frac{m}{s^{2}}t =14\frac{m}{s} \\\\ t =\frac{14\frac{m}{s}}{0.9\frac{m}{s^{2}}}=15.56s

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at t=0 s (when the SUV passed the police car) and t=15.56s(when the police car catches up to the SUV)

You might be interested in
A 1000 kg car moving at 108 km/h jams on its brakes and comes to a stop. How much work was done by friction?
Nostrana [21]

Answer:

The work done by friction was -4.5\times10^{5}\ J

Explanation:

Given that,

Mass of car = 1000 kg

Initial speed of car =108 km/h =30 m/s

When the car is stop by brakes.

Then, final speed of car will be zero.

We need to calculate the work done by friction

Using formula of work done

W=\Delta KE

W=K.E_{f}-K.E_{i}

W=\dfrac{1}{2}mv_{f}^2-\dfrac{1}{2}mv_{f}^2

Put the value of m and v

W=0-\dfrac{1}{2}\times1000\times(30)^2

W=-450000
\ J

W=-4.5\times10^{5}\ J

Hence, The work done by friction was -4.5\times10^{5}\ J

3 0
3 years ago
Use the equation d = m/v [stack fraction), where d= density, m= mass, and v
sladkih [1.3K]

Answer:

54.

Explanation:

6 (v) x 9 (m) = 54.

54 (m) / 6 (v) = 9 (d)

5 0
3 years ago
In boxing, the use of 16-ounce gloves rather than 12-ounce gloves reduces the chance of injury because the force is distributed
mr Goodwill [35]

Answer:

true

Explanation:

Here we have assumed that increasing the mass of a glove will increase the surface area.

Injury is caused by the application of pressure at a point on the body. The application of pressure takes place via the area of the gloves. Pressure is given by

P=\dfrac{F}{A}

where

F = Force

A = Area to which the force is applied

So, a bigger glove will increase the surface area and reduce the pressure resulting in a lower chance of injury.

Hence, the statement is true.

5 0
2 years ago
Two particles, one with charge -5.45 × 10^-6 C and one with charge 4.39 × 10^-6 C, are 0.0209 meters apart. What is the magnitud
Levart [38]

Explanation:

Given that,

Charge 1, q_1=-5.45\times 10^{-6}\ C

Charge 2, q_2=4.39\times 10^{-6}\ C

Distance between charges, r = 0.0209 m

1. The electric force is given by :

F=k\dfrac{q_1q_2}{r^2}

F=9\times 10^9\times \dfrac{-5.45\times 10^{-6}\times 4.39\times 10^{-6}}{(0.0209)^2}

F = -492.95 N

2. Distance between two identical charges, r=0.0209\ m

Electric force is given by :

F=\dfrac{kq_3^2}{r^2}

q_3=\sqrt{\dfrac{Fr^2}{k}}

q_3=\sqrt{\dfrac{492.95\times (0.0209)^2}{9\times 10^9}}

q_3=4.89\times 10^{-6}\ C

Hence, this is the required solution.

3 0
2 years ago
How to solve number 10
Vinil7 [7]

The 'formulas' to use are just the definitions of 'power' and 'work':

Power = (work done) / (time to do the work)

and  

Work = (force) x (distance) .

Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.

Power = (force x distance) / (time)

From the sheet, we know the power, the distance, and the time.  So we can use this one formula to find the force.

Power = (force x distance) / (time)

Multiply each side by (time):  (Power) x (time) = (force) x (distance)

Divide each side by (distance): Force = (power x time) / (distance).

Look how neat, clean, and simple that is !

Force = (13.3 watts) x (3 seconds) / (4 meters)

Force = (13.3 x 3 / 4) (watt-seconds / meter)

Force = 39.9/4 (joules/meter)

<em>Force = 9.975 Newtons</em>

Is that awesome or what !

6 0
2 years ago
Other questions:
  • each experiences an attractive force of 3.7 N. The spheres are then touched together and moved back to a distance r apart. Find
    5·1 answer
  • A student is investigating the best method for heating marshmallows using an open flame.
    11·1 answer
  • 6. A billiard ball traveling at 4.0 m/s has an elastic head-on collision with a billiard ball of equal mass
    9·1 answer
  • The element in an incandescent lightbulb that releases light energy is
    5·1 answer
  • Visible light travels at a speed 3.0 × 108 of m/s. If red light has a wavelength of 6.5 × 10–7 m, what the frequency of this lig
    7·1 answer
  • 6. A proton is released from rest 1.0 cm off a center of a uniformly charged disk of a 2.0 m radius carrying a +180 nC charge. W
    7·1 answer
  • Consider a disk of radius 4.9 cm, having a uniformly distributed charge of +6.1 μC. The value of the Coulomb constant is 8.98755
    12·1 answer
  • Match the measuring instrument with the appropriate statement.
    11·1 answer
  • If a green ball has a greater momentum than an orange ball and both balls are moving at the same velocity, then _________.
    13·2 answers
  • Please help. I will give brainliest to first good answer
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!