Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s
<span>it takes about about 37,200 years for light to travel 1 light year. So the answer would have to be false. It would take way longer than 300k years
</span>
Answer:
speed and acceleration
Explanation:
speed is a scalar quantity
acceleration is a vector quantity
Answer:
2 amps
Explanation:
Given data
Power = 460W
voltage= 230V
Required
The amperage/ current of the fuse
Recall P= IV
I= P/V
I= 460/230
I=2 amps
Hence the current of the fuse is 2 amps
Frequency and wavelength are two variables which are
indirectly proportional.
They are related in the following equation:
f = c / w
Where,
<span>f = frequency c =
speed of light w = wavelength</span>
Since c is constant, we can equate condition 1 and
condition 2:
f1 w1 = f2 w2
When w2 = 3 w1, then f2 becomes:
261.63 w1 = f2 (3 w1)
Cancelling w1:
f2 = 261.63 / 3
<span>f2 = 87.21 Hz</span>