The load is 17156 N.
<u>Explanation:</u>
First compute the flexural strength from:
σ = FL / π![R^{3}](https://tex.z-dn.net/?f=R%5E%7B3%7D)
= 3000
(40
10^-3) / π (5
10^-3)^3
σ = 305
10^6 N / m^2.
We can now determine the load using:
F = 2σd^3 / 3L
= 2(305
10^6) (15
10^-3)^3 / 3(40
10^-3)
F = 17156 N.
Answer: No
Explanation:
Length= 2cm= 20mm
Now meter stick can read to nearest millimeter.
It is given that length is to be measured with a precision of 1% of 20mm= 1/100 * 20= 0.2mm
Since the least count is 1mm of meter stick and precision required is less than that. So, meter stick cannot be used for this, travelling microscope can be used for this as it can read to 0.1mm.
Answer:
138.9 °C
Explanation:
The datum of quality is saying to us that liquid water is in equilibrium with steam. Saturated water table gives information about this liquid-vapour equilibrium. In figure attached, it can be seen that at 350 kPa of pressure (or 3.5 bar) equilibrium temperature is 138.9 °C
Answer:
Use GitHub or stackoverflow for this answer
Explanation:
It helps with programming a lot
Answer:
The work of the cycle.
Explanation:
The area enclosed by the cycle of the Pressure-Volume diagram of a Carnot engine represents the net work performed by the cycle.
The expansions yield work, and this is represented by the area under the curve all the way to the p=0 line. But the compressions consume work (or add negative work) and this is substracted fro the total work. Therefore the areas under the compressions are eliminated and you are left with only the enclosed area.