1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
12

An inventor claims to have developed a heat engine that produces work at 10 kW, while absorbing heat at 10 kW. Evaluate such a c

laim
Engineering
1 answer:
uranmaximum [27]3 years ago
6 0

Explanation:

Inventor claims that

Work produce by heat engine W=10 KW

Heat absorb by heat engine Q= 10 KW

As we know that from Kelvin planks statement that ,it states that ,this is impossible to covert all heat into work without rejecting some amount of heat into the surrounding.So by using Kelvin Plank statement  we can say that this inventor claim is wrong because this type of engine is not possible.it is impossible heat engine.

You might be interested in
Assume a steel pipe of inner radius r1= 20 mm and outer radius r2= 25 mm, which is exposed to natural convection at h = 50 W/m2.
Mekhanik [1.2K]

Answer:

98,614.82 W/m²

Explanation:

Q = 2\pi hL(\frac{T_2-T_1}{Ln\frac{r_2}{r_1}})

Where;

Q = the amount of heat loss from the pipe

h =  the heat transfer coefficient of the pipe = 50 W/m².K

T₁ = the ambient temperature of the pipe = 30⁰C

T₂  = the outside temperature of the pipe = 100⁰C

L= the length of pipe

r₁ = inner radius of the pipe = 20mm

r₂ = outer radius of the pipe = 25mm

To determine the amount of heat loss from the pipe per unit length

From the equation above

\frac{Q}{L} = 2\pi h(\frac{T_2-T_1}{Ln\frac{r_2}{r_1}})

\frac{Q}{L} = 2\pi* 50(\frac{100-30}{Ln\frac{25}{20}})

\frac{Q}{L} = 314.159(\frac{70}{0.223})

\frac{Q}{L} = 314.159(313.901) = 98,614.82 W/m²

3 0
3 years ago
Air is compressed isothermally from 13 psia and 55°F to 80 psia in a reversible steady-flow device. Calculate the work required,
solong [7]

Answer:64.10 Btu/lbm

Explanation:

Work done in an isothermally compressed steady flow device is expressed as

Work done = P₁V₁ In { P₁/ P₂}

Work done=RT In { P₁/ P₂}

where P₁=13 psia

          P₂= 80 psia

Temperature =°F Temperature is convert to  °R

T(°R) = T(°F) + 459.67

T(°R) = 55°F+ 459.67

=514.67T(°R)

According to the properties of molar gas, gas constant and critical properties table, R  which s the gas constant of air is given as 0.06855 Btu/lbm

Work = RT In { P₁/ P₂}

0.06855 x 514.67 In { 13/ 80}

=0.06855 x 514.67 In {0.1625}

= 0.06855 x 514.67  x -1.817

=- 64.10Btu/lbm

The required work therefore for this  isothermal compression is 64.10 Btu/lbm

8 0
2 years ago
Wastewater flows into a _________ once it is released into a floor drain.
rodikova [14]

Answer:

A) Sump pit

Explanation:

A wastewater typically refers to a body of water that has contaminated through human use in homes, offices, schools, businesses etc. Wastewater are meant to be disposed in accordance with the local regulations and standards because they are unhygienic for human consumption or use.

Generally, many homes use a floor drain in their bathrooms and toilets to remove wastewater in order to mitigate stagnation and to improve hygiene. A floor drain can be defined as a material installed on floors for the continuous removal of any stagnant wastewater in buildings. Wastewater flows into a sump pit once it is released into a floor drain through the use of a pipe such as a polyvinyl chloride (PVC) pipe, which directly connects the floor drain to the sump pit. The wastewater can the be removed from the sump pit when it is filled up through the use of a pump.

6 0
2 years ago
A 600-MW steam power plant, which is cooled by a nearby river, has a thermal efficiency of 54 percent. Determine the rate of hea
Gennadij [26K]

Answer:

\dot Q _{L} = 511.111 MW. Heat transfer can be higher if themal efficiency is lower.

Explanation:

The heat transfer rate to the river water is calculated by this expression:

\dot Q_{L} = \dot Q_{H} - \dot W

\dot Q_{L} = (\frac{1}{\eta_{th}}-1 )\cdot \dot W\\\dot Q_{L} = (\frac{1}{0.54}-1)\cdot (600 MW)\\\dot Q _{L} = 511.111 MW

The actual heat transfer can be higher if the steam power plant reports an thermal efficiency lower than expected.

8 0
3 years ago
You find an unnamed fluid in the lab we will call Fluid A. Fluid A has a specific gravity of 1.65 and a dynamic viscosity of 210
Naily [24]

Answer:

1.2727 stokes

Explanation:

specific gravity of fluid A = 1.65

Dynamic viscosity = 210 centipoise

<u>Calculate the kinematic viscosity of Fluid A </u>

First step : determine the density of fluid A

Pa = Pw * Specific gravity =  1000 * 1.65 = 1650 kg/m^3

next : convert dynamic viscosity to kg/m-s

210 centipoise = 0.21 kg/m-s

Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A

                                            = 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec

Convert to stokes = 1.2727 stokes

4 0
2 years ago
Other questions:
  • When the vessel and its contents are warmed to 100 °C, Q decomposes into its constituent elements. What is the total pressure, a
    11·1 answer
  • Consider a fully developed laminar flow in a circular pipe. The velocity at R/2 (midway between the wall surface and the centerl
    6·1 answer
  • How to solve this question
    11·1 answer
  • In water and wastewater treatment processes a filtration device may be used to remove water from the sludge formed by a precipit
    10·1 answer
  • Add my sc please?.<br><br> kindacracked
    12·2 answers
  • Heyyyyyyyyy people wrud
    7·1 answer
  • A heating system must maintain the interior of a building at TH = 20 °C when the outside temperature is TC = 2 °C. If the rate o
    10·1 answer
  • Teaching how to characterize and implement high speed power devices for tomorrow's engineers
    10·1 answer
  • The following is a series of questions pertaining to the NSPE Code of Ethics. Please indicate whether the statement are true or
    14·1 answer
  • which acpi power state allows a system to start where it left off, but all other components are turned off? sleeping mechanical
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!