Depending in the category of the Hurricane, you make experience different levels of wind power and destruction. Hurricanes only have 5 categories ranking from Category 1 to Category 5. The smallest category is category 1 making category 5 the largest. The bigger the category, the more wind or destruction you'll experience.
33.11 trillion kilometers is equivalent to 3.5 light years
hope this helps :)<span />
In lower temperatures, the molecules of real gases tend to slow down enough that the attractive forces between the individual molecules are no longer negligible. In high pressures, the molecules are forced closer together- as opposed to the further distances between molecules at lower pressures. This closer the distance between the gas molecules, the more likely that attractive forces will develop between the molecules. As such, the ideal gas behavior occurs best in high temperatures and low pressures. (Answer to your question: C) This is because the attraction between molecules are assumed to be negligible in ideal gases, no interactions and transfer of energy between the molecules occur, and as temperature decreases and pressure increases, the more the gas will act like an real gas.
There are 4 moles of spectator ions that remain in solution.
The equation of the reaction is;
Na2CO3(aq) + Pb(NO3)2(aq) -------> PbCO3(s) + 2NaNO3(aq)
We have to determine the limiting reactant. This is the reactant that yields the least amount of product. Note that the spectator ions are Na^+ and NO3^- that form NaNO3.
For Na2CO3
1 mole of Na2CO3 yields 2 moles of NaNO3
3 moles of Na2CO3 yields 3 × 2/1 = 6 moles of NaNO3
For Pb(NO3)2
1 mole of Pb(NO3)2 yields 2 moles of NaNO3
2 moles of Pb(NO3)2 yields 2 × 2/1 = 4 moles of NaNO3
We can see that Pb(NO3)2 is the limiting reactant.
Since [NaNO3] = [Na^+] = [NO3^-], it follows that there are 4 moles of spectator ions that remain in solution.
Learn more: brainly.com/question/22885959