<u>Answer:</u> The value of
for the given reaction is 0.224
<u>Explanation:</u>
For the given chemical equation:

The expression of
for given equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:
![[HI]_{eq}=0.85M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D0.85M)
![[H_2]_{eq}=0.27M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D0.27M)
![[I_2]_{eq}=0.60M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.60M)
Putting values in above expression, we get:

Hence, the value of
for the given reaction is 0.224
Answer:
The value of the equilibrium constant
at this temperature is 3.42.
Explanation:
Partial pressure of the sulfur dioxide =
Partial pressure of the oxygen gas =
Partial pressure of the sulfur trioxide =

The expression of an equilibrium constant is given by :


The value of the equilibrium constant
at this temperature is 3.42.
Answer:
d.
Explanation:
i was think b at first but that doesnt really explain how it gets to the circulatory system so d because without the the regulation of the heart rate and oxgen rich blood the muscular system can do absolutely nothing
Ionic is metal and nonmetal
Answer:
4. C2H4, C3H6, C4H8
this is the alkane homologous series of hydrocarbons.
Their general formula is CnH2n
you can check this fits for all these compounds
put n = 1, 2, 3 and so on