<span>A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its molecular mass is 60. g/mol.
</span>Q1)
Empirical formula is the simplest ratio of whole numbers of components making up a compound.
the percentages have been given, therefore we can calculate for 100 g of the compound.
C H O
Mass in 100 g 40.0 g 6.7 g 53.5 g
Molar mass 12 g/mol 1 g/mol 16 g/mol
Number of moles 40.0/12= 3.33 6.7/1 = 6.7 53.5/16 = 3.34
Divide by the least number of moles
3.33/3.33 = 1 6.7/3.33 = 2.01 3.34/3.33 = 1.00
after rounding off
C - 1
H - 2
O - 1
Empirical formula - CH₂O
Q2)
Molecular formula is the actual number of components making up the compound.
To find the number of empirical units we have to find the mass of one empirical unit.
Mass of one empirical unit = CH₂O - 12 + (1x2) + 16 = 30 g
Mass of one mole of compound = 60 g
Number of empirical units = 60 g / 30 g = 2
Therefore molecular formula - 2(CH₂O)
Molecular formula - C₂H₄O₂
By applying some (compared to other things) simple steps<span>, </span>you can control and prevent soilwearing away<span>! </span>The four most common soil wearing away prevention methods are green plants<span>, </span>geotextiles<span>, </span>mulch<span>, </span>and (big walls to hold back water, soil, etc.)<span>. </span>Green plants<span>: </span>The simplest andmost natural way to prevent wearing away is through planting green plants<span>.</span>
<span>Among the given choices, the third option is the only one which illustrates single replacement.
(3)H2SO4 + Mg --> H2 + MgSO4
A single replacement is also termed as single-displacement reaction, a reaction by which an element in a compound, displaces another element.
It can be illustrated this way:
X + Y-Z → X-Z + Y</span>
Explanation:
Non-metals are the species that are electron deficient and they are able to accept one or more electrons from a donor atom in order to complete their octet.
For example, carbon (C), nitrogen (N), chlorine, (Cl), phosphorus (P) etc are all non-metals.
Metals are the species that contain more number of electrons in their valence shell and in order to attain stability they easily lose an electron.
For example, sodium (Na), lithium (Li), Beryllium (Be), Magnesium (Mg) etc are all metals.
Metalloids are the species that show properties of both metals and non-metals.
For example, Boron (B), Antimony (Sb), Silicon (Si) and Germanium (Ge) etc are metalloids.
Just to make sure I’m right, is number 1 miss spelled??