Answer:

Explanation:
<u>Accelerated Motion</u>
The acceleration of a moving body is defined as the relation of change of speed (or velocity in vector form) with the time taken. The formula is given by

Or, equivalently

Where vf and vo are the final and initial speeds respectively. The problem gives us these values: v0 = 3 m/s, vf = 1 m/s, t = 3 seconds. Computing a

The negative sing of a indicates there is deceleration or decreasing speed
Answer:
it’s transparent to all visible light
step-by-step explanation:
translucent objects allow some light to travel through them
The resistance of the sample is 
Explanation:
The relationship between resistance of a material and temperature is given by the equation

where
is the resistance at the temperature 
is the temperature coefficient of resistance
For the sample of nickel in this problem, we have:
when the temperature is 
While the temperature coefficient of resistance of nickel is

Therefore, the resistance of the sample when its temperature is

is

Learn more about resistance:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly
Answer:
The angle is 
Explanation:
From the question we are told that
The distance of the dartboard from the dart is 
The time taken is 
The horizontal component of the speed of the dart is mathematically represented as

where u is the the velocity at dart is lunched
so

substituting values

=> 
From projectile kinematics the time taken by the dart can be mathematically represented as

=> 


=> 
![\theta = tan^{-1} [0.277]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20tan%5E%7B-1%7D%20%5B0.277%5D)

Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.