Answer:
v = 1.98 mph
Explanation:
Given that,
Speed to travel one mile is 100 mph
Speed to travel another mile is 1 mph
The formula used to find your average speed is given by :

Putting the values, we get :

v = 1.98 mph
So, yours average speed is 1.98 mph.
Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2
Answer:
New volume, v2 = 0.8L
Explanation:
<u>Given the following data;</u>
Original Volume = 2L
Original Temperature = 280K
New Temperature = 700K
To find new volume V2, we would use Charles' law.
Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Charles is given by;
Making V2 as the subject formula, we have;


V2 = 0.8L
Therefore, the volume of the gas after it is heated is 0.8L.
I think it’s D which is the stomach if not I can get you someone that can help you
Answer:
The final velocity of the car A is -1.053 m/s.
Explanation:
For an elastic collision both the kinetic energy and the momentum of the system are conserved.
Let us call
= mass of car A;
= the initial velocity of car A;
= the final velocity of car A;
and
= mass of car B;
= the initial velocity of car B;
= the final velocity of car B.
Then, the law of conservation of momentum demands that

And the conservation of kinetic energy says that

These two equations are solved for final velocities
and
to give


by putting in the numerical values of the variables we get


and


Thus, the final velocity of the car A is -1.053 m/s and of car B is 3.49 m/s.