a) El Niño is defined as an abnormal weather pattern caused by the warming of the Pacific Ocean near the equator, off the coast of South America. The sun warms the water near the equator, which can make more clouds and, therefore, more rain. It has detrimental effects on biodiversity leading to its large-scale loss by
warmer sea temperatures leading to plankton and fish kills in coastal waters
lower sea levels leading to exposure of underwater coral reefs, causing their loss.
Given parameters:
Initial velocity of Coin = 0m/s
Time taken before coin hits ground = 5.7s
Unknown:
Final velocity of the coin = ?
Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.
The fitting one of them here is shown below;
V = U + gt
where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.
Now input the parameters and solve;
V = 0 + 9.81 x 5.7
V = 55.917m/s
Therefore, the final velocity is 55.917m/s.
Answer:
The current will decrease.
Explanation:
When another bulb is added, the resistance is going to increase. Keep in mind that the current is inversely proportional to the resistance (<em>Ohm's law: R= </em><em>V</em><em>/</em><em>I</em><em> </em><em>).</em> Therefore when the resistance increase, the current running in the circuit will decrease.
Answer:

Explanation:
Acceleration is defined as the change in velocity divided by the time it took to produce such change. The formula then reads:

Where Vf is the final velocity of the object, (in our case 80 m/s)
Vi is the initial velocity of the object (in our case 0 m/s because the object was at rest)
and t is the time it took to change from the Vi to the Vf (in our case 0.05 seconds.
Therefore we have:

Notice that the units of acceleration in the SI system are
(meters divided square seconds)