1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
3 years ago
14

To calculate the ideal mechanical advantage of a lever divide the input arm by the

Physics
1 answer:
Ivanshal [37]3 years ago
6 0
To calculate the ideal mechanical advantage of a lever divide the input arm by the output arm. 
Mechanical advantage is the amount by which a machine can multiply an input force, calculated by dividing output Force in newtons by input force in newtons, while the ideal mechanical advantage is the mechanical advantage of a machine that has no friction, calculated by dividing the input distance by the output distance. 
You might be interested in
Help? Please? Thanks!
Katena32 [7]
1,3 and 5 are the answers 
5 0
2 years ago
Sam, whose mass is 78 kg , stands at the top of a 11-m-high, 110-m-long snow-covered slope. His skis have a coefficient of kinet
Valentin [98]

Answer:

v = 8.09   m/s

Explanation:

For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.

Let's calculate the energy

       

starting point. Higher

         Em₀ = U = m gh

final point. To go down the slope

         Em_f = K = ½ m v²

The work of the friction force is

         W = fr L cos 180

to find the friction force let's use Newton's second law

Axis y

        N - W_y = 0

        N = W_y

X axis

        Wₓ - fr = ma

let's use trigonometry

        sin  θ = y / L

         sin θ = 11/110 = 0.1

         θ = sin⁻¹  0.1

          θ = 5.74º

         sin 5.74 = Wₓ / W

         cos 5.74 = W_y / W

         Wₓ = W sin 5.74

         W_y = W cos 5.74

the formula for the friction force is

         fr = μ N

         fr = μ W cos θ

Work is friction force is

         W_fr = - μ W L cos θ  

Let's use the relationship of work with energy

        W + ΔU = ΔK

         -μ mg L cos 5.74 + (mgh - 0) = 0  - ½ m v²

        v² = - 2 μ g L cos 5.74 +2 (gh)

        v² = 2gh - 2 μ gL cos 5.74

let's calculate

        v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74

        v² = 215.6 -150.16

        v = √65.44

        v = 8.09   m/s

6 0
2 years ago
Consider a roller coaster begins 15m above the ground. If the cart has a mass of 75kg, what is the velocity of the cart halfway
SashulF [63]

Answer:

v = 12.12 m/s

Explanation:

Given that,

The mass of the cart, m = 75 kg

The roller coaster begins 15 m above the ground.

We need to find the velocity of the cart halfway to the ground. Let the velocity be v. Using the conservation of energy at this position, h = 15/2 = 7.5 m

mgh=\dfrac{1}{2}mv^2\\\\v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 7.5} \\\\v=12.12\ m/s

So, the velocity of the cart is 12.12 m/s.

7 0
2 years ago
A tube is sealed at both ends and contains a 0.0100-m long portion of liquid. The length of the tube is large compared to 0.0100
Ahat [919]

Answer:

31.321 rad/s

Explanation:

L = Tube length

A = Area of tube

\rho = Density of fluid

v = Fluid velocity

m = Mass = \rho Al

Centripetal force is given by

F=\dfrac{mv^2}{L}\\ F=\dfrac{m(\omega L)^2}{L}\\ F=m\omega^2\\ F= 0.01A\rho\omega^2L

Pressure is given by

P=\dfrac{F}{A}=\rho gL\\\Rightarrow \dfrac{0.01A\rho\omega^2L}{A}=\rho gL\\\Rightarrow 0.01\omega^2=g\\\Rightarrow \omega^2=\dfrac{g}{0.01}\\\Rightarrow \omega=\sqrt{\dfrac{g}{0.01}}\\\Rightarrow \omega=\sqrt{\dfrac{9.81}{0.01}}\\\Rightarrow \omega=31.321\ rad/s

The angular speed of the tube is 31.321 rad/s

5 0
3 years ago
The Earth orbits around the sun because the gravitational force that the sun
kotykmax [81]
<h3>Question -:</h3>

The Earth orbits around the sun because the gravitational force that the sun

exerts on the Earth:

O A. causes Earth's acceleration toward the sun.

O B. is very small because the sun is so far from the Earth.

O c. is smaller than the force the Earth exerts on the sun.

O D. pushes the Earth away from the sun.

<h3>Answer -:</h3>

O A. causes Earth's acceleration toward the sun.

<em>I </em><em>hope </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em><em>have </em><em>a </em><em>nice </em><em>time </em><em>ahead!</em>

5 0
2 years ago
Other questions:
  • An airplane flies in a horizontal circle of radius 500 m at a speed of 150 m/s. If the radius were changed to 1000 m, but the sp
    15·1 answer
  • A car accelerates in the +x direction from rest with a constant acceleration of a1 = 1.76 m/s2 for t1 = 20 s. At that point the
    13·1 answer
  • A piece of fruit falls straight down. As it falls,
    9·1 answer
  • What are the benefits when you engage in physical fitness?​
    6·2 answers
  • I will thank and give 5 stars to whoever answers!!
    8·2 answers
  • A tennis ball "A" is released from rest down a 10.0 m long inclined ramp with a uniform acceleration of 5.0 m/s2 . Another tenni
    5·1 answer
  • Parker (73.2 kg) is being dragged down the hall with an applied force of 123 N. If the frictional force is 27.4 N, what is the c
    11·1 answer
  • An astronomy class is so excited by the discovery of planets around other stars that they decide to do a library exhibit on the
    12·1 answer
  • Convert 75.0 degrees Celsius into Fahrenheit
    12·1 answer
  • Which quantity is a vector quantity?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!