The distribution of the possible digits of the numbers are
1.) 9, 9, 9, 9, 3 [Number of arrangements = 5! / 4! = 120 / 24 = 5]
2.) 9, 9, 9, 8, 4 [Number of arrangements = 5! / 3! = 120 / 6 = 20]
3.) 9, 9, 9, 7, 5 [Number of arrangements = 5! / 3! = 120 / 6 = 20]
4.) 9, 9, 9, 6, 6 [Number of arrangements = 5! / (3! x 2!) = 120 / 12 = 10]
5.) 9, 9, 8, 8, 5 [Number of arrangements = 5! / (2! x 2!) = 120 / 4 = 30]
6.) 9, 9, 8, 7, 6 [Number of arrangements = 5! / 2! = 120 / 2 = 60]
7.) 9, 9, 7, 7, 7 [Number of arrangements = 5! / (3! x 2!) = 120 / 12 = 10]
8.) 9, 8, 8. 8, 6 [Number of arrangements = 5! / 3! = 120 / 6 = 20]
9.) 9, 8, 8, 7, 7 [Number of arrangements = 5! / (2! x 2!) = 120 / 4 = 30]
10.) 8, 8, 8, 8, 7 [Number of arrangements = 5! / 4! = 120 / 24 = 5]
Number of 5 digit numbers whose digit sum up to 39 = 5 + 20 + 20 + 10 + 30 + 60 + 10 + 20 + 30 + 5 = 210
Answer:
Step-by-step explanation:
Number of vertices
3
Variable constraints
a>0 and b>0
Diagonal lengths
(data not available)
Height
b
Area
A = (a b)/2
Centroid
x^_ = (a/3, b/3)
Mechanical properties:
Area moment of inertia about the x-axis
J_x invisible comma x = (a b^3)/12
Area moment of inertia about the y-axis
J_y invisible comma y = (a^3 b)/12
Polar moment of inertia
J_zz = 1/12 a b (a^2 + b^2)
Product moment of inertia
J_x invisible comma y = -1/24 a^2 b^2
Radii of gyration about coordinate axes
r_x = b/sqrt(6)
r_y = a/sqrt(6)
Distance properties:
Side lengths
a | sqrt(a^2 + b^2) | b
Hypotenuse
sqrt(a^2 + b^2)
Perimeter
p = sqrt(a^2 + b^2) + a + b
Inradius
r = 1/2 (-sqrt(a^2 + b^2) + a + b)
Circumradius
R = 1/2 sqrt(a^2 + b^2)
Generalized diameter
sqrt(a^2 + b^2)
Convexity coefficient
χ = 1
Mean triangle area
A^_ = (a b)/24