1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mash [69]
3 years ago
15

What is electricity?

Physics
1 answer:
grin007 [14]3 years ago
6 0
Electricity is the flow of electric charges. Hope this is correct and helps!!
You might be interested in
During normal beating, a heart creates a maximum 3.95-mV potential across 0.305 m of a person’s chest, creating a 0.75-Hz electr
WINSTONCH [101]

Answer:

E = 0.0130 V/m.

Explanation:

The electric field is related to the potential difference as follows:

E = \frac{\Delta V}{d}

<u>Where:</u>

E: is electric field

ΔV: is the potential difference = 3.95 mV  

d: is the distance of a person's chest = 0.305 m

Then, the electric field is:

E = \frac{\Delta V}{d} = \frac{3.95 \cdot 10^{-3} V}{0.305 m} = 0.0130 V/m

Therefore, the maximum electric field created is 0.0130 V/m.

I hope it helps you!

7 0
3 years ago
A transverse wave on a string is described by the following wave function.y = (0.090 m) sin (px/11 + 4pt)(a) Determine the trans
alukav5142 [94]

Explanation:

(a) It is known that equation for transverse wave is given as follows.

                 y = (0.09 m)sin(\pi \frac{x}{11} + 4 \pi t)

Now, we will compare above equation with the standard form of transeverse wave equation,

                 y = A sin(kx + \omega t)

where,    A is the amplitude = 0.09 m

              k is the wave vector = \frac{\pi}{11}

              \omega is the angular frequency = 4\pi

              x is displacement = 1.40 m

              t is the time = 0.16 s

Now, we will differentiate the equation with respect to t as follows.

The speed of the wave  will be:

                   v(t) = \frac{dy}{dt}

                v(t) = A \omega cos(kx + \omega t)

        v(t) = (0.09 m)(4\pi) cos(\frac{\pi \times 1.4}{11} + 4 \pi \times 0.16)

          v(t) = -0.84 m/s

The acceleration of the particle in the location is

            a(t) = \frac{dv}{dt}

           a(t) = -A \omega 2sin(kx + \omega t)

           a(t) = -(0.09 m)(4 \pi)2 sin(\frac{\pi \times 1.4}{11} + 4\pi \times 0.16)

           a(t) = -9.49 m/s^{2}

Hence, the value of transverse wave is 0.84 m/s and the value of acceleration is 9.49 m/s^{2} .

(b)  Wavelength of the wave is given as follows.

               \lambda = \frac{2\pi}{k}

              \lambda = (frac{2\pi}{\frac{\pi}{11})&#10;

              \lambda = 22 m

The period of the wave is

             T = \frac{2 \pi}{\omega}

             T = \frac{2 \pi}{4 \pi}

                = 0.5 sec

Now, we will calculate the speed of propagation of wave as follows.

                    v = \frac{\lambda}{T}

                       = \frac{22 m}{0.5 s}

                       = 44 m/s

therefore, we can conclude that wavelength is 22 m, period is 0.5 sec, and speed of propagation of wave is 44 m/s.

7 0
4 years ago
Calculate the self-inductance (in mH) of a 45.0 cm long, 10.0 cm diameter solenoid having 1000 loops. mH (b) How much energy (in
Karo-lina-s [1.5K]

Answer:

(a) The self inductance, L = 21.95 mH

(b) The energy stored, E = 4.84 J

(c) the time, t = 0.154 s

Explanation:

(a) Self inductance is calculated as;

L = \frac{N^2 \mu_0 A}{l}

where;

N is the number of turns = 1000 loops

μ is the permeability of free space = 4π x 10⁻⁷ H/m

l is the length of the inductor, = 45 cm = 0.45 m

A is the area of the inductor (given diameter = 10 cm = 0.1 m)

A = \pi r^2 = \frac{\pi d^2}{4} = \frac{\pi \times (0.1)^2}{4} = 0.00786 \ m^2

L = \frac{(1000)^2 \times (4\pi \times 10^{-7}) \times (0.00786)}{0.45} \\\\L = 0.02195 \ H\\\\L = 21.95 \ mH

(b) The energy stored in the inductor when 21 A current ;

E = \frac{1}{2}LI^2\\\\E = \frac{1}{2} \times (0.02195) \times (21) ^2\\\\E = 4.84 \ J

(c) time it can be turned off if the induced emf cannot exceed 3.0 V;

emf = L \frac{\Delta I}{\Delta t} \\\\t = \frac{LI}{emf} \\\\t = \frac{0.02195 \times 21}{3} \\\\t = 0.154 \ s

3 0
3 years ago
This picture represents the electric field diagram between two particles with static charges. Do the two particles have the same
dexar [7]

Answers:

No, They will attract each other, B, and neither direction

Explanation:

Since the two already presented particles in the diagram represent both opposing charges due to the direction of the arrows (the arrows facing away from the particle shows a positive charge and the particles facing towards the particle show a negative charge), not only because of this but as the arrows between the particles show an attracting magnetic field, then it can be concluded that the particles will attract to each other and if another particle was introduced into the diagram of a positive charge, then it would attract to the negatively charged particle. If you have any questions or need further explanation, please comment below. E2021, have a great day.

7 0
3 years ago
Please help on this one?
diamong [38]

Answer:

ITS C

Explanation:

7 0
3 years ago
Other questions:
  • g A coil formed by wrapping 50 turns of wire in the shape of a square is positioned in a magnetic field so that the normal to th
    5·1 answer
  • Describing Momentum Calculatthe momentum of cars A and answer the question Car A: Mass: 1,000 kilograms Velocity: 40 meters/seco
    10·2 answers
  • What term defines the specific amount of time required for half of a radioactive substance to become stable?
    7·1 answer
  • A computer technician always touches the metal body of a computer before touching any of its electrical parts. why?
    15·1 answer
  • The position of a ball as a function of time is given by
    9·1 answer
  • Which best describes a radioactive isotope?
    9·2 answers
  • a block initially at rest has a mass m and sits on a plane incline at angle. it slides a distance d before hitting a spring and
    15·1 answer
  • Two forces whose resultant is 100newton are perpendicular to each other. If one of them makes an angle of 60newton with the resu
    13·1 answer
  • _______is stored energy
    14·2 answers
  • Which vector is the sum of the vectors shown below ?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!