Before going to answer this question first we have to understand reflection and laws of reflection.
Reflection is the optical phenomenon in which light will bounce back to the same medium from which it had originated .
Whenever a light ray will incident on a mirror or any reflecting surface, it will be reflected. The ray which falls on the reflecting surface is called incident ray and the ray which is reflected is called reflected ray.
Let us consider a normal to the point of incidence.The angle made by incident ray with the normal is called angle of incidence.Let it be denoted as[ i ]
The angle made by the reflected ray with the normal is called angle of incidence.Let it be denoted as [r]
There are two types of reflection.One is called regular and other one is called as irregular.The laws of reflection is valid for both the types of reflection.
There are two laws of reflection.
FIRST LAW -It states that the incident ray,reflected ray and the normal to the point of incidence,all lie in one plane.
SECOND LAW- It states that that the angle of incidence is equal to the angle of reflection irrespective of the type of reflection.i.e i =r
Hence the correct answer will be angle of reflection.
Answer:
14.8 m
Explanation:
S= ut +
a
where u = initial velocity
S= (0
)(2
) +
(7.4
)(2
)
S=
(7.4
)(2
)
S=14.8 m
Answer:
The low side pressure of an A/C system losing vacuum and the pressure rising above zero indicates that there is too much refrigerant in the system.
Explanation:
Considering an A/C system, the condenser fan might be malfunctioning if the low side pressure of the air conditioner is excessive. On the other hand, it's also conceivable that the system has been overcharged with refrigerant.
Stated the scenario that the refrigerant of the system was being recovered, it is an indication that the system is merely overcharged. Even with the engine off, you will notice high pressures.
Either too much oil is present, or there is too much refrigerant in the air conditioning system. In either case, until you let some of that pressure out—ideally, a mechanic should do this—the issue won't go away on its own.
To know more about the pressure scenarios related to AC systems, refer to:
brainly.com/question/17072827
#SPJ4
Net force = (mass) x (acceleration)... that’s Newton’s 2nd law of motion.
Net force = (15kg) x (10 m/s squared)
Net force = 150 Newtons.
Density is calculated as mass per unit volume. In this case, since the material has a mass of 47 grams and we have the volume of 15 cm^3, we can simply divide the values:
Density = 47 grams / 15 cm^3 = 3.1 g/cm^3
Therefore, the material has a density of 3.1 g/cm^3