Assuming that the table has 4 legs. the upward force is equal to the downwardd force. the downward force of the table is the weight of the table. so the upward force is also the weight of the table but in opposite direction, so the upward force in on one leg is 1/4 of the weight of the table
Answer:
49 A
Explanation:
We are given that
Number of turns,N=1
Radius,r=14 cm=
1 m=100 cm
Magnetic field,B=0.7 G=


We know that magnetic field

Substitute the values



We have that the block is moving horizontally. Hence, its potential energy due to gravity stays the same. The only change in its mechanical energy is the one due to the change of speed. This reduction of its kinetic energy, due to the conservation of energy, is equal to the work that friction does. We have that at A the kinetic energy is : K=1/2*m*u^2=10*10*10/2=500J. At B, we have that K=1/2*10*16=80J. Sine we have that the initial value is 500, the work from the friction force (opposite to the movement of the object) is 80-500=420J.
I think you forgot to give the options along with the question. I am answering the question based on my knowledge and research. "<span>The charge can be located anywhere, since flux does not depend on the position of the charge as long as it is inside the sphere" gives the answer to the question. I hope that this answer has come to your help.</span>
Answer:
Explanation:
Number of turns
N = 210turns
Length of solenoid
l = 0.18m
Cross sectional area
A = 4cm² = 4 × 10^-4m²
A. Inductance L?
Inductance can be determined using
L = N²μA/l
Where
μ is a constant of permeability of the core
μ = 4π × 10^-7 Tm/A
A is cross sectional area
l is length of coil
L is inductance
Therefore
L = N²μA / l
L=210² × 4π × 10^-7 × 4 × 10^-4 / 0.18
L = 1.23 × 10^-4 H
L = 0.123 mH
B. Self induce EMF ε?
EMF is given as
ε = -Ldi/dt
Since rate of decrease of current is 120 A/s
Then, di/dt = —120A/s, since the current is decreasing
Then,
ε = -Ldi/dt
ε = - 1.23 × 10^-4 × -120
ε = 0.01478 V
ε ≈ 0.015 V