Answer:
Headlands and bays are created where there are bands of hard and soft rock which meet the coastline at right angles. Softer rock is eroded more quickly and erodes backwards to form bays (which may have beaches). The harder rocks are more resistant to erosion and jut out into the sea to form exposed headlands
If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration. It can only happen when the sum of
all forces (the 'net' force) on the object is zero.
And it doesn't matter what the object's mass is. That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.
Answer:
E=
Explanation:
We are given that
Charge on ring= Q
Radius of ring=a
We have to find the magnitude of electric filed on the axis at distance a from the ring's center.
We know that the electric field at distance x from the center of ring of radius R is given by

Substitute x=a and R=a
Then, we get




Where K=
Hence, the magnitude of the electric filed due to charged ring on the axis of ring at distance a from the ring's center=
Answer:
The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
Explanation:
From the question we are told that
The distance between earth and Retah is 
Here c is the peed of light with value 
The time taken to reach Retah from earth is 
The velocity of the spacecraft is mathematically evaluated as

substituting values


The time elapsed in the spacecraft’s frame is mathematically evaluated as

substituting value
![T = 90000 * \sqrt{ 1 - \frac{[2.4*10^{8}]^2}{[3.0*10^{8}]^2} }](https://tex.z-dn.net/?f=T%20%20%3D%20%2090000%20%2A%20%20%5Csqrt%7B%201%20-%20%20%5Cfrac%7B%5B2.4%2A10%5E%7B8%7D%5D%5E2%7D%7B%5B3.0%2A10%5E%7B8%7D%5D%5E2%7D%20%7D)

=> 
So The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame