1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
6

Why does stress build up at transform boundaries?

Physics
1 answer:
Rina8888 [55]3 years ago
3 0
Tectonic plate edges are not smooth. At transform boundaries, plates move against each other, but since the plates aren't smooth, lockups form. Stress is built up as both sides continue to steadily push against each other until there is sudden movement, where both plates quickly slide until they lock up again. This is what causes earthquakes.
You might be interested in
Describe why using the simulation is a good method for studying projectiles. Clearly identify the error sources the simulation e
DiKsa [7]
Am not sure
Have a nice day
6 0
3 years ago
You launch a cannonball at an angle of 35° and an initial velocity of 36 m/s (assume y = y₁=
velikii [3]

Answer:

Approximately 4.2\; {\rm s} (assuming that the projectile was launched at angle of 35^{\circ} above the horizon.)

Explanation:

Initial vertical component of velocity:

\begin{aligned}v_{y} &= v\, \sin(35^{\circ}) \\ &= (36\; {\rm m\cdot s^{-1}})\, (\sin(35^{\circ})) \\ &\approx 20.6\; {\rm m\cdot s^{-1}}\end{aligned}.

The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing y_{1} is the same as the altitude y_{0} at which this projectile was launched: y_{0} = y_{1}.

Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is 20.6\; {\rm m\cdot s^{-1}} (upwards,) the vertical velocity right before landing would be (-20.6\; {\rm m\cdot s^{-1}}) (downwards.) The change in vertical velocity is:

\begin{aligned}\Delta v_{y} &= (-20.6\; {\rm m\cdot s^{-1}}) - (20.6\; {\rm m\cdot s^{-1}}) \\ &= -41.2\; {\rm m\cdot s^{-1}}\end{aligned}.

Since there is no drag on this projectile, the vertical acceleration of this projectile would be g. In other words, a = g = -9.81\; {\rm m\cdot s^{-2}}.

Hence, the time it takes to achieve a (vertical) velocity change of \Delta v_{y} would be:

\begin{aligned} t &= \frac{\Delta v_{y}}{a_{y}} \\ &= \frac{-41.2\; {\rm m\cdot s^{-1}}}{-9.81\; {\rm m\cdot s^{-2}}} \\ &\approx 4.2\; {\rm s} \end{aligned}.

Hence, this projectile would be in the air for approximately 4.2\; {\rm s}.

8 0
1 year ago
Read 2 more answers
What can you infer about a wave with a short wavelength?
raketka [301]

Answer:

- It can be infer that it has a lower frequency.

<em>In the case of electromagnetic waves.</em>

- A short wavelength means a lower energy,

Explanation:

The wavelength is the distance between two consecutive crests or valleys while the frequency is the number of crests that pass for a specific point in an interval of time.

For example, a person makes laundry once a weak.

In this example, the event is represented by the laundry and the interval of time is once a weak

The velocity of a wave is defined as:

v = \nu \cdot \lambda  (1)

Where nu is the frequency and \lambda is the wavelenth

\lambda =  \frac{v}{\nu}  (2)

Notice from equation 2 that the wavelength is inversely proportional to the frequency (when the wavelength increases the frequency decreases).

In the case of electromagnetic waves, a short wavelength means a lower energy, as it can be seen in equation 4 (inversely proportional).

E = h\nu  (3)

E = \frac{hc}{\lambda} (4)

8 0
2 years ago
Read 2 more answers
A wooden cube with the mass of 1kg is placed on a frictionless plane that makes an angle of 30° with the floor.
Anni [7]

Answer:

I dont know

Explanation:

8 0
2 years ago
Calculate the force needed to accelerate a car of a mass 1000 kg by 3 m/s2
beks73 [17]

Answer:

<h2>3000 N</h2>

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question we have

force = 1000 × 3

We have the final answer as

<h3>3000 N</h3>

Hope this helps you

5 0
3 years ago
Other questions:
  • A hydrogen atom that has an electron in the n = 2 state absorbs a photon. What wavelength must the photon possess to send the el
    9·1 answer
  • A battery-operated car moves forward as a result of which device?
    9·2 answers
  • A neutral metal ball is suspended by a string. A positively charged insulating rod is placed near the ball, which is observed to
    10·1 answer
  • You have just landed on Planet X. You take out a ball of mass 101 g , release it from rest from a height of 16.0 m and measure t
    6·1 answer
  • A hop is a springing from one foot but landing on the other foot? Question 4 options: True False
    10·2 answers
  • __________ is extremely resistant to oxidation and rusting.
    13·1 answer
  • A ball is still live when
    11·1 answer
  • A rocket, initially at rest on the ground, accelerates straight upward from rest with constant (net) acceleration 29.4 m/s2 . Th
    14·1 answer
  • Hello people~
    12·2 answers
  • An object weighs 200N on earth What would be its mass on the moon
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!