Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
Answer:
- It can be infer that it has a lower frequency.
<em>In the case of electromagnetic waves.</em>
- A short wavelength means a lower energy,
Explanation:
The wavelength is the distance between two consecutive crests or valleys while the frequency is the number of crests that pass for a specific point in an interval of time.
For example, a person makes laundry once a weak.
In this example, the event is represented by the laundry and the interval of time is once a weak
The velocity of a wave is defined as:
(1)
Where
is the frequency and
is the wavelenth
(2)
Notice from equation 2 that the wavelength is inversely proportional to the frequency (when the wavelength increases the frequency decreases).
In the case of electromagnetic waves, a short wavelength means a lower energy, as it can be seen in equation 4 (inversely proportional).
(3)
(4)
Answer:
<h2>3000 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 1000 × 3
We have the final answer as
<h3>3000 N</h3>
Hope this helps you